Skip to main content
Published Online:https://doi.org/10.1024/1016-264X.18.1.23

Zusammenfassung: Im Bereich der motorischen Rehabilitation zentralnervös bedingter Defizite sind die durch Metaanalysen gestützten Aussagen der höchsten Evidenzklasse oft sehr allgemein gehalten und lassen sich nicht zu einem schlüssigen Behandlungskonzept zusammensetzen. Häufig führen kleine Gruppengrößen, erhebliche Unterschiede in der Patientenselektion, sehr differierende therapeutische Interventionen und unterschiedliche Messparameter in den zu Grunde liegenden primären Studien zu erheblichen Schwierigkeiten in der Konstruktion der Fragestellung von Metaanalysen. Andererseits sind in den letzten Jahren zahlreiche Arbeiten erschienen, deren Ergebnisse die motorische Rehabilitation maßgeblich beeinflusst haben. In einem narrativen Review werden Kernkomponenten der Wirksamkeit motorisch rehabilitativer Interventionen, neue Verfahren, Evaluationsstudien traditioneller physiotherapeutischer Konzepte und ein neues Analyseverfahren zur Erfassung der klinischen Relevanz einer Untersuchung vorgestellt.


Rehabilitation of Motor Deficits with Origin in the Central Nervous System - What Is Evidence-Based - What Clinical Relevant?

Abstract: Statements of the highest evidence class are supported by metaanalyses. Concerning rehabilitation of motor deficits with origin in the central nervous system they are in particular undifferentiated and do not lead to a conclusive treatment concept. Frequent problems are small sample sizes, variability in subject selection and differences in interventions or outcome measures of the primary studies. These conditions make it difficult to construct differentiated questions for metaanalyses. On the other hand numerous studies appeared in the last years, whose results considerably influenced motor rehabilitation. A narrative review presents core components of effectiveness of motor rehabilitative interventions, new therapeutic approaches, evaluation studies of traditional physiotherapeutic concepts and a new method of analysing clinical relevance of an investigation.

References

  • Aisen, M.L., Krebs, H.I., Hogan, N., Mc Dowell, F., Volpe, B.T. (1997). The effect of robot assisted therapy and rehabilitative training on motor recovery after stroke. Archives of Neurology, 54, 443–446. First citation in articleCrossrefGoogle Scholar

  • Asanuma, H., Keller, A. (1991). Neuronal mechanisms of motor learning in mammals. NeuroReport, 2, 217–224. First citation in articleCrossrefGoogle Scholar

  • Bliss, T.V.P., Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356. First citation in articleCrossrefGoogle Scholar

  • Bütefisch, C., Hummelsheim, H., Denzler, P., Mauritz, K.H. (1995). Repetitive training of isolated movements improves outcome of motor rehabilitation of the centrally paretic hand. Journal of the Neurological Sciences, 130, 59–68. First citation in articleCrossrefGoogle Scholar

  • Classen, J., Liepert, J., Wise, S.P., Hallet, M., Cohen, L.G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79, 1117–1123. First citation in articleCrossrefGoogle Scholar

  • Diener, H.C. Kommission Leitlinien der DGN (2005). Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart: Thieme. First citation in articleGoogle Scholar

  • Diserens, K., Michel, P., Bogousslavsky, J. (2006). Early mobilisation after stroke: Review of literature. Cerebrovascular Diseases, 22, 183–190. First citation in articleCrossrefGoogle Scholar

  • Greenhalgh, T. (2000). Einführung in die Evidence-based medicine. Bern: Huber. First citation in articleGoogle Scholar

  • Herbert, R.D., Dean, C., Gandevia, S.C. (1998). Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiologica Scandinavica, 163, 361–368. First citation in articleCrossrefGoogle Scholar

  • Hesse, S., Bertelt, C., Schaffrin, A., Malezic, M., Mauritz, K.H. (1994). Restoration of gait in nonambulatory patients by treadmill training with partial body-weight support. Archives of Physical Medicine and Rehabilitation, 75, 1087–1093. First citation in articleCrossrefGoogle Scholar

  • Hesse, S., Werner, C., Pohl, M., Rückriem, S., Mehrholz, J. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: A single-blinded randomized trial in two centres. Stroke, 36, 1960–1966. First citation in articleCrossrefGoogle Scholar

  • Hummelsheim, H., Amberger, S., Mauritz, K.H. (1996). The influence of EMG-initiated electrical muscle stimulation on motor recovery of the centrally paretic hand. European Journal of Neurology, 3, 245–254. First citation in articleCrossrefGoogle Scholar

  • Hummelsheim, H., Eickhof, C. (1999). Repetitive training for arm and hand in a patient with locked-in syndrome. Scandinavian Journal of Rehabilitation Medicine, 31, 250–256. First citation in articleCrossrefGoogle Scholar

  • Jöbges, M., Spittler-Schneiders, H., Renner, C.I.E., Hummelsheim, H. (2006). Clinical relevance of rehabilitation programs for Parkinson's disease. I: Non-symptom-specific therapeutic approaches. Parkinsonism and Related Disorders, [Epub ahead of print], – . First citation in articleGoogle Scholar

  • Kalra, L., Ratan, R. (2007). Recent advances in stroke rehabilitation 2006. Stroke, 38, 235–237. First citation in articleCrossrefGoogle Scholar

  • Keller, A., Arissian, K., Asanuma, H. (1992). Synaptic proliferation in the motor cortex of adult cats after long-term thalamic stimulation. Journal of Neurophysiology, 68, 295–308. First citation in articleCrossrefGoogle Scholar

  • Langhammer, B., Stanghelle, J.K. (2000). Bobath or motor relearning program? A comparison of two different approaches of physiotherapy in stroke rehabilitation: A randomised controlled study. Clinical Rehabilitation, 14, 361–369. First citation in articleCrossrefGoogle Scholar

  • Larsen, T., Olsen, T.S., Sorensen, J. (2006). Early home-supported discharge of stroke patients: A health technology assessment. International Journal of technology assessment in health care, 22, 313–320. First citation in articleCrossrefGoogle Scholar

  • Lee, J.H., van der Snels, I.A.K., Beckermann, H., Lankhorst, G.J. (2001). Exercise therapy for amr function in stroke patients: A systemic review of randomized controlled trials. Clinical Rehabilitation, 15, 20–31. First citation in articleCrossrefGoogle Scholar

  • Liepert, J., Terborg, C., Weiller, C. (1998). Motor plasticity induced by synchronized thumb and foot movements. Experimental Brain Research, 125, 435–439. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M.A., Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak trascranial direct current stimulation. Journal of Physiology, 527, 633–639. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M.A., Paulus, W. (2001). Sustained excitability elevations by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–1901. First citation in articleCrossrefGoogle Scholar

  • Pascual-Leone, A., Nguyet, D., Cohen, L.G., Brasil-Neto, J.P., Cammarota, A., Hallet, M. (1995). Modulation of muscle response evoked by transcranial magnetic stimulation during acquisition of new fine motor skills. Journal of Neurophysiology, 74, 1037–1045. First citation in articleCrossrefGoogle Scholar

  • Pohl, M., Mehrholz, J. (2006). Immediate effects of an individually designed functional ankle-foot orthosis on stance gait in hemiparetic patients. Clinical Rehabilitation, 20, 324–330. First citation in articleCrossrefGoogle Scholar

  • Pohl, M., Mehrholz, J., Ritschel, C., Rückriem, S. (2002). Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial. Stroke, 33, 553–558. First citation in articleCrossrefGoogle Scholar

  • Pohl, M., Werner, C., Holzgraefe, M., Kroczek, G., Mehrholz, J., Wingendorf, I. (2007). Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: A single-blind, randomized multicentre trial (Deutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation, 21, 17–27. First citation in articleCrossrefGoogle Scholar

  • Sackett, D.L., Rosenberg, W.M.C., Gray, J.A., Haynes, R.B., Richardson, W.S. (1996). Evidence based medicine: What it is and what it isn't. British Medical Journal, 312, 71–72. First citation in articleCrossrefGoogle Scholar

  • Sterr, A., Elbert, T., Berthold, I., Kolbel, S., Rockstroh, B., Taub, E. (2002). Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: An exploratory study. Archives of Physical Medicine and Rehabilitation, 83, 1374–1377. First citation in articleCrossrefGoogle Scholar

  • Sterr, A., Freivogel, S. (2003). Motor-improvement following intensive training in low-functioning chronic hemiparesis. Neurology, 61, 842–844. First citation in articleCrossrefGoogle Scholar

  • Stewart, K.C., Caraugh, J.H., Summers, J.J. (2006). Bilateral movement training and stroke rehabilitation: A systematic review and meta-analysis. Journal of the Neurological Sciences, 244, 89–95. First citation in articleCrossrefGoogle Scholar

  • Taub, E., Miller, N.E., Novack, T.A., Cook, E.W., Fleming, W.C., Nepomuceno, C.S. (1993). Technique to improve motor deficits after stroke. Archives of Physical Medicine and Rehabilitation, 74, 347–354. First citation in articleGoogle Scholar

  • The Movement Disorder Society Task Force (2002). Management of Parkinson's disease: An evidence-based review. Introduction. Movement Disorders, 17(Suppl. 4), 1–6. First citation in articleGoogle Scholar

  • Tyson, S.F., Thornton, H.A. (2001). The effects of a hinged ankle foot orthosis on hemiplegic gait: Objective measures and users opinion. Clinical Rehabilitation, 15, 53–58. First citation in articleCrossrefGoogle Scholar

  • Uy, J., Riding, M.C., Hillier, S., Thompson, P.D., Miles, T.S. (2003). Does induction of plastic changes in motor cortex improve leg function after stroke?. Neurology, 61, 982–984. First citation in articleCrossrefGoogle Scholar

  • Van Peppen, R.P., Kortsmit, M., Lindeman, E., Kwakkel, G. (2006). Effects of visual feedback therapy on postural control in bilateral standing after stroke: A systematic review. Journal of Rehabilitation Medicine, 38, 3–9. First citation in articleCrossrefGoogle Scholar

  • Wang, R.Y., Yen, L., Lee, C.C., Lin, P.Y., Wang, M.F., Yang, Y.R. (2005). Effects of an ankle-foot orthosis on balance performance in patients with hemiparesis of different durations. Clinical Rehabilitation, 19, 37–33. First citation in articleCrossrefGoogle Scholar

  • Woods Duncan, P. (1997). Synthesis of intervention trials to improve motor recovery following stroke. Topics in Stroke Rehabilitation, 3, 1–20. First citation in articleCrossrefGoogle Scholar

  • Yue, G., Cole, K.J. (1992). Strength increase from motor program: Comparison of training with maximal voluntary and imagined contractions. Journal of Neurology, Neurosurgery, and Psychiatry, 67, 1114–1123. First citation in articleGoogle Scholar