Skip to main content
Übersichtsarbeiten/Overview articles

Vom Hirnbild zum guten Unterricht

Implikationen von neuropsychologischen und Bildgebungsbefunden für die Lehr-Lern-Forschung

Published Online:https://doi.org/10.1024/1422-4917/a000298

Psychische Störungen im Kindes- und Jugendalter, vor allem Störungen der Aufmerksamkeit, Lese-Rechtschreibstörungen (LRS) und Rechenstörungen, betreffen in ihrem Auftreten und ihren Auswirkungen ganz besonders die Schule und das schulische Lernen. In jüngster Zeit entfachten neurowissenschaftliche Befunde sowohl in der Öffentlichkeit als auch in der Lehr- und Lernforschung eine rege Diskussion, ob und inwieweit neue Erkenntnisse zur Funktionsweise des Gehirns auch relevant für das Lernen und Lehren in der Schule sein können. Der vorliegende Übersichtsartikel fasst neurowissenschaftliche Befunde zur regelhaften kindlichen Entwicklung von Aufmerksamkeits-, Arbeitsgedächtnis- und Exekutivfunktionen zusammen und diskutiert kritisch deren Relevanz für schulisches Lernen. Des Weiteren werden Bildgebungsbefunde zu spezifischen Teilleistungsstörungen wie LRS und Dyskalkulie dargestellt und mögliche praktische Implikationen für Unterrichtspraxis, Lehrerausbildung, Frühdiagnostik und Prävention sowie störungsspezifische Therapie zusammengefasst. Insgesamt sind es wohl weniger neue Anwendungen (wie z. B. Lehrmethoden), die von einer Neurodidaktik als interdisziplinärem Forschungsfeld zu erwarten sind; vielmehr können die Neurowissenschaften Argumentationsgrundlagen für bestimmte Theorien und Modelle liefern, welche ein tieferes Verständnis zugrundeliegender kognitiver Mechanismen und Pathomechanismen von Lernprozessen und –störungen ermöglichen.


From brain imaging to good teaching? Implications from neuroscience for research on learning and instruction

Psychiatric disorders in childhood and adolescence, in particular attention deficit disorder or specific learning disorders like developmental dyslexia and developmental dyscalculia, affect academic performance and learning at school. Recent advances in neuroscientific research have incited an intensive debate both in the general public and in the field of educational and instructional science as well as to whether and to what extent these new findings in the field of neuroscience might be of importance for school-related learning and instruction. In this review, we first summarize neuroscientific findings related to the development of attention, working memory and executive functions in typically developing children and then evaluate their relevance for school-related learning. We present an overview of neuroimaging studies of specific learning disabilities such as developmental dyslexia and developmental dyscalculia, and critically discuss their practical implications for educational and teaching practice, teacher training, early diagnosis as well as prevention and disorder-specific therapy. We conclude that the new interdisciplinary field of neuroeducation cannot be expected to provide direct innovative educational applications (e.g., teaching methods). Rather, the future potential of neuroscience lies in creating a deeper understanding of the underlying cognitive mechanisms and pathomechanisms of learning processes and learning disorders.

Literatur

  • Anderson, M. , Reid, C. (2009). Don’t forget about levels of explanation. Cortex, 45, 560–561. First citation in articleCrossref MedlineGoogle Scholar

  • Anderson, V. (2002). Executive functions in children: Introduction. Child Neuropsychology, 8, 69–70. First citation in articleCrossref MedlineGoogle Scholar

  • Ansari, D. , De Smedt, B. , Grabner, R. H. (2012). Neuroeducation: A critical overview of an emerging field. Neuroethics, 5, 105–117. First citation in articleCrossrefGoogle Scholar

  • Bach, S. , Richardson, U. , Brandeis, D. , Martin, E. , Brem, S. (2013). Print-specific multimodal brain activation in kindergarten improves prediction of reading skills in second grade. Neuroimage, 82, 605–615. First citation in articleCrossref MedlineGoogle Scholar

  • Bach, S. , Brandeis, D. , Hofstetter, C. , Martin, E. , Richardson, U. & Brem, S. (2010). Early emergence of deviant frontal fMRI activity for phonological processes in poor beginning readers. Neuroimage, 53, 682–693. First citation in articleCrossref MedlineGoogle Scholar

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423. First citation in articleCrossref MedlineGoogle Scholar

  • Baddeley, A. D. , Hitch, G. (1974). Working memory. In G. H. Bower, (Ed.), The psychology of learning and motivation. Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press. First citation in articleGoogle Scholar

  • Barkley, R. A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65–94. First citation in articleCrossref MedlineGoogle Scholar

  • Baumert, J. (Hrsg.). (2001). PISA 2000, Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske und Budrich. First citation in articleGoogle Scholar

  • Bayerisches Kultusministerium. (Hrsg.). (2000). Lehrplan für die bayerische Grundschule. München: Verlag J. Maiß GmbH. First citation in articleGoogle Scholar

  • Beigel, D. , Steinbauer, W. , Zink, K. (2005). Das bewegte Klassenzimmer: Ein Projekt zeigt Wirkung. Ergebnisse und Anregungen für die Praxis. Kirchzarten: VAK Verlags GmbH. First citation in articleGoogle Scholar

  • Brem, S. , Bach, S. , Kucian, K. , Guttorm, T. K. , Martin, E. , Lyytinen, H. ... Richardson, U. (2010). Brain sensitivity to print emerges when learn letter-speech sound correspondences. Proceedings of the National Academy of Sciences of the USA, 107, 7939–7944. First citation in articleGoogle Scholar

  • Brocki, K. C. , Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26, 571–593. First citation in articleCrossref MedlineGoogle Scholar

  • Brodeur, D. & Boden, C. (2000). The effects of spatial uncertainty ad cue predictability in visual orienting in children. Cognitive Development, 15, 367–382. First citation in articleCrossrefGoogle Scholar

  • Bruchmüller, K. , Margraf, J. , Schneider, S. (2012). Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis. Journal of Consulting and Clinical Psychology, 80, 128–138. First citation in articleCrossref MedlineGoogle Scholar

  • Brügelmann, H. (2001). Lesenlernen – Schreibenlernen. In W. Einsiedler, M. Götz, H. Hacker, J. Kahlert, R. Keck, U. Sandfuchs, (Hrsg.), Handbuch Grundschulpädagogik und Grundschuldidaktik (S. 410–415). Bad Heilbrunn: Klinkhardt. First citation in articleGoogle Scholar

  • Brunner, M. , Troost, J. , Pfeiffer, B. , Heinrich, C. , Pöschel, U. (2000). Das Heidelberger Vorschulscreening zur auditiv-kinästhetischen Wahrnehmung und Sprachverarbeitung (HVS). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Cao, F. , Bitan, T. , Chou, T. L. , Burman, D. D. , Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation pattern. Journal of Child Psychology and Psychiatry, 47, 1041–1050. First citation in articleCrossref MedlineGoogle Scholar

  • Casey, B. J. , Tottenham, N. , Liston, C. , Durston, S. (2005). Imaging the developing brain: What have we learned about cognitive development? Trends in Cognitive Sciences, 9, 104–110. First citation in articleCrossref MedlineGoogle Scholar

  • Christodoulou, J. A. , Gaab, N. (2009). Using and misusing neuroscience in education-related research. Cortex, 45, 555–557. First citation in articleCrossref MedlineGoogle Scholar

  • Coch, D. & Ansari, D. (2009). Thinking about mechanisms is crucial to connecting neuroscience and education. Cortex, 45, 546–547. First citation in articleCrossref MedlineGoogle Scholar

  • Cohen Kadosh, R. , Soskic, S. , Iuculano, T. , Kanai, R. & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20, 2016–2020. First citation in articleCrossref MedlineGoogle Scholar

  • D’Espito, M. , Grossmann, M. (1998). he physiological basis of executive function and working memory. The Neuroscientist, 2, 345–352. First citation in articleCrossrefGoogle Scholar

  • Dennison, P. E. , Dennison, G. E. (1994). Brain Gym Teacher’s Edition – Revised. Ventura: Edu-Kinesthetics. First citation in articleGoogle Scholar

  • Di Luca, S. , Lefèvre, N. , Pesenti, M. (2010). Place and summation coding for canonical and noncanonical finger numeral representations. Cognition, 117, 95–100. First citation in articleCrossref MedlineGoogle Scholar

  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to yong adulthood: Cognitive functions, anatomy, and biochemistry. In D. Stuss, R. Knight, (Eds.), Principles of frontal lobe function (pp. 466–503). New York: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Diamond, A. , Carlson, S. M. , Beck, D. M. (2005). Preschool children’s performance in task switching on the dimensional change card sort task: Separating the dimensions aids the ability to switch. Developmental Neuropsychology, 28, 689–729. First citation in articleCrossref MedlineGoogle Scholar

  • Dilling, H. , Mombour, W. , Schmidt, M. H. (2008). Internationale Klassifikation psychischer Störungen. ICD-10 Kapitel V (F). Bern: Huber. First citation in articleGoogle Scholar

  • Dummer-Smoch, L. , Hackethal, R. (2007). Handbuch zum Kieler Leseaufbau. Kiel: Veris Verlag. First citation in articleGoogle Scholar

  • Eden, G. F. & Moats, L. (2002). The role of neuroscience in the remediation of students with dyslexia. Nature Neuroscience Review, 5, 1080–1084. First citation in articleCrossrefGoogle Scholar

  • Elder, T. E. (2010). The importance of relative standards in ADHD diagnoses: Evidence based on exact birth dates. Journal of Health Economics, 29, 641–656. First citation in articleCrossref MedlineGoogle Scholar

  • Facoetti, A. , Paganoni, P. , Larusso, M. L. (2000). The spatial distribution of visual attention in developmental dyslexia. Experimental Brain Research, 132, 531–538. First citation in articleCrossref MedlineGoogle Scholar

  • Fair, D. A. , Cohen, A. L. , Power, J. D. , Dosenbach, N. U. , Church, J. A. , Miezin, F. M. ... Petersen, S. E. (2009). Functional brain networks develop from «local to distributed» organization. PLoS Comput Biol, 5, e1000381. First citation in articleCrossref MedlineGoogle Scholar

  • Fimm, B. (2007). Aufmerksamkeit. In L. Kaufmann, K. Konrad, H.-C. Nuerk, K. Willmes, (Hrsg.), Kognitive Entwicklungsneuropsychologie (S. 153–176). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Foorman, B. R. , Breier, J. I. , Fletcher, J. M. (2003). Interventions aimed at improving reading success: an evidence-based approach. Developmental Neuropsychology, 24, 613–639. First citation in articleCrossref MedlineGoogle Scholar

  • Gathercole, S. E. (1999). Cognitive approaches to the development of short-term memory. Trends in Cognitive Science, 3, 410–419. First citation in articleCrossref MedlineGoogle Scholar

  • Georgiewa, P. , Rzanny, R. , Glauche, V. , Knab, R. , Kaiser, W. A. , Blanz, B. (1999). fMRi during word processing in dyslexic and normal reading children. NeuroReport, 10, 3459–3465. First citation in articleGoogle Scholar

  • Giedd, J. N. , Blumenthal, J. , Jeffries, N. O. , Castellanos, F. X. , Liu, H. , Zijdenbos, A. ... Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863. First citation in articleCrossref MedlineGoogle Scholar

  • Gogtay, N. , Giedd, J. N. , Lusk, L. , Hayashi, K. M. , Greenstein, D. , Vaituzis, A. C. ... Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the USA, 101, 8174–8179. First citation in articleGoogle Scholar

  • Goswami, U. (2004). Neuroscience and education. British Journal of Educational Psychology, 74, 1–14. First citation in articleCrossref MedlineGoogle Scholar

  • Grande, M. , Meffert, E. , Huber, W. , Amunts, K. , Heim, S. (2011). Word frequency effects in the left IFG in dyslexic and normally reading children during picture naming and reading. Neuroimage, 57, 1212–1220. First citation in articleCrossref MedlineGoogle Scholar

  • Gura, T. (2005). Educational research: Big plans for little brains. Nature, 435, 1156–1158. First citation in articleCrossref MedlineGoogle Scholar

  • Hasselhorn, M. , Seidler-Brandler, U. , Körner, K. (2000). Ist das «Nachsprechen von Kunstwörtern» für die Entwicklungsdiagnostik des phonologischen Gedächtnisses geeignet? In M. Hasselhorn, W. Schneider, H. Marx, (Hrsg.), Diagnostik von Lese-Rechtschreibschwierigkeiten. Jahrbuch der pädagogisch-psychologischen Diagnostik. Tests und Trends (S. 119– 133). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Heim, S. , Grande, M. , Pape-Neumann, J. , van Ermingen, M. , Meffert, E. , Grabowska, A. ... Amunts, K. (2010). Interaction of phonological awareness and magnocellular processing during normal and dyslexic reading: Behavioural and fMRI investigations. Dyslexia, 16, 258–282. First citation in articleCrossref MedlineGoogle Scholar

  • Heim, S. , Tschierse, J. , Amunts, K. , Wilms, M. , Vossel., S. , Willmes, K. ... Huber, W. (2008). Cognitive subtypes of dyslexia. Acta Neurobiologiae Experimentalis, 68, 73–82. First citation in articleMedlineGoogle Scholar

  • Heine, A. , Engl, V. , Thaler, V. M. , Fussenegger, B. , Jacobs, A. M. (2012). Neuropsychologie von Entwicklungsstörungen schulischer Fertigkeiten. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Heine, A. & Jacobs, A. M. (2011). Lehr-Lern-Forschung unter neurowissenschaftlicher Perspektive. Münster: Waxmann. First citation in articleGoogle Scholar

  • Herrmann, U. (2006). Neurodidaktik. Grundlagen und Vorschläge für gehirngerechtes Lehren und Lernen. Weinheim/Basel: Beltz. First citation in articleGoogle Scholar

  • Hoeft, F. , Hernandez, A. , McMillon, G. , Taylor-Hill, H. , Martindale, J. L. , Meyler, A. ... Gabrieli, J. D. (2006). Neural basis of dyslexia: A comparison between dyslexic and nondyslexic children equated for reading ability. Journal of Neuroscience, 26, 10700–10708. First citation in articleCrossref MedlineGoogle Scholar

  • Hoeft, F. , Meyler, A. , Hernandez, A. , Juel, C. , Taylor-Hill, H. , Martindale, J. L. ... Gabrieli, J. D. (2007). Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the National Academy of Sciences of the USA, 104, 4234–4239. First citation in articleGoogle Scholar

  • Hongwanishkul, D. , Happaney, K. R. , Lee, W. , Zelazo, P. D. (2005). Hot and cool executive functions: Age-related changes and individual differences. Developmental Neuropsychology, 28, 617–644. First citation in articleCrossref MedlineGoogle Scholar

  • Howard-Jones, P. A. (2009). Scepticism is not enough. Cortex, 45, 550–551. First citation in articleCrossref MedlineGoogle Scholar

  • Huizinga, M. , Dolan, C. , Van der Molen, M. (2006). Age related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 2017–2036. First citation in articleCrossref MedlineGoogle Scholar

  • Ise, E. , Engel, R. R. , Schulte-Körne, G. (2012). Was hilft bei der Lese-Rechtschreibstörung? Kindheit und Entwicklung, 21, 122–136. First citation in articleLinkGoogle Scholar

  • Jansen, H. , Mannhaupt, G. , Marx, H. , Skowronek, H. (2002). Bielefelder Screening zur Früherkennung von Lese-Rechtschreibschwierigkeiten (BISC). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Jolles, D. D. , Van Buchem, M. A. , Crone, E. A. , Rombouts, S.A. (2010). A comprehensive study of whole-brain functional connectivity in children and young adults. Cerebral Cortex, 21, 385–391. First citation in articleCrossref MedlineGoogle Scholar

  • Jurado, M. B. , Roselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17, 213–233. First citation in articleCrossref MedlineGoogle Scholar

  • Kaufmann, L. (2008). Dyscalculia: Neuroscience and education. Educational Research, 50, 163–175. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Wood., G. , Rubinsten, O. & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36, 763–787. First citation in articleCrossref MedlineGoogle Scholar

  • Klicpera, C. , Gasteiger-Klicpera, B. (1993). Lesen und Schreiben – Entwicklung und Schwierigkeiten. Die Wiener Längsschnittuntersuchungen über die Entwicklung, den Verlauf und die Ursachen von Lese- und Schreibschwierigkeiten in der Pflichtschulzeit. Bern: Huber. First citation in articleGoogle Scholar

  • Klicpera, C. , Schabmann, A. , Gasteiger-Klicpera, (2010). Legasthenie – LRS. Modelle, Diagnose, Therapie und Förderung. München: Ernst Reinhardt. First citation in articleGoogle Scholar

  • Konrad, K. (2007). Entwicklung von Exekutivfunktionen und Arbeitsgedächtnisleistungen. In L. Kaufmann, K. Konrad, H.-C. Nuerk, K. Willmes, (Hrsg.), Kognitive Entwicklungsneuropsychologie (S. 300–320). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Korte, M. (2009). Wie Kinder heute lernen: Was die Wissenschaft über das kindliche Gehirn weiß – Das Handbuch für den Schulerfolg. München: Goldmann. First citation in articleGoogle Scholar

  • Krajewski, K. , Nieding, G. , Schneider, W. (2007). Mengen, zählen, Zahlen: Die Welt der Mathematik verstehen (MZZ). Berlin: Cornelsen. First citation in articleGoogle Scholar

  • Krajewski, K. , Nieding, G. , Schneider, W. (2008). Kurz- und langfristige Effekte mathematischer Frühförderung im Kindergarten durch das Programm «Mengen, zählen, Zahlen». Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 40, 135–146. First citation in articleLinkGoogle Scholar

  • Krinzinger, H. , Günther, T. (2013). Lesen, Schreiben, Rechnen – gibt es Unterschiede zwischen den Geschlechtern? Lernen und Lernstörungen, 2(1) doi 10.1024/2235-0977/a000029. First citation in articleGoogle Scholar

  • Krinzinger, H. , Koten, J. W. , Hennemann, J. , Schueppen, A. , Sahr, K. , Arndt, D. , ... Willmes, K. (2011). Sensitivity, reproducibility, and reliability of self-paced versus fixed stimulus presentation in an fMRI study on exact, nonsymbolic arithmetic in typically developing children aged between 6 and 12 years. Developmental Neuropsychology, 36, 721–740. First citation in articleCrossref MedlineGoogle Scholar

  • Krinzinger, H. , Koten, J. W. , Horoufchin, H. , Kohn, N. , Arndt, D. , Sahr, K. ... Willmes, K. (2011). The role of finger representations and saccades for number processing: An fMRI study in children. Frontiers in Psychology, 2, 373. doi 10.3389/fpsyg.2011.00373 First citation in articleCrossref MedlineGoogle Scholar

  • Kucian, K. , Grond, U. , Rotzer, S. , Henzi, B. , Schönmann, C. , Plangger, F. ... von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 57, 782–795. First citation in articleCrossref MedlineGoogle Scholar

  • Küspert, P. , Schneider, W. (2006). Hören, Lauschen, Lernen: Sprachspiele für Vorschulkinder (5. Aufl.). Göttingen: Vandenhoeck & Ruprecht. First citation in articleGoogle Scholar

  • Lachmann, T. , Berti, S. , Kujala, T. , Schröger, E. (2005). Diagnostic subgroups of developmental dyslexia have different deficits in neural processing of tones and phonemes. International Journal of Psychophysiology, 56, 105–120. First citation in articleCrossref MedlineGoogle Scholar

  • Landerl, K. & Kaufmann, L. (2008). Dyskalkulie. München: Reinhardt. First citation in articleGoogle Scholar

  • Mähler, C. , Hasselhorn, M. (2003). Automatische Aktivierung des Rehearsalprozesses im phonologischen Arbeitsgedächtnis bei lernbehinderten Kindern und Erwachsenen. Zeitschrift für Pädagogische Psychologie, 17, 255–260. First citation in articleLinkGoogle Scholar

  • Marx, P. & Weber, J. (2006). Vorschulische Vorhersage von Lese- und Rechtschreibschwierigkeiten. Zeitschrift für Pädagogische Psychologie, 20, 251–259. First citation in articleLinkGoogle Scholar

  • Maurer, U. , Brem, S. , Bucher, K. , Kranz, F. , Benz, R. , Steinhausen, H. C. , Brandeis, D. (2007). Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain, 130, 3200–3210. First citation in articleCrossref MedlineGoogle Scholar

  • Meyler, A. , Keller, T. A. , Cherkassky, V. L. , Gabrieli, J. D. , Just, M. A. (2008). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46, 2580–2592. First citation in articleCrossref MedlineGoogle Scholar

  • Meyler, A. , Keller, T. A. , Cherkassky, V. L. , Lee, D. H. , Hoeft, F. , Whitfield-Gabrieli, S. ... Just, M. A. (2007). Brain activation during sentence comprehension among good and poor readers. Cerebral Cortex, 17, 2780–2787. First citation in articleCrossref MedlineGoogle Scholar

  • Moeller, K. & Nuerk, H.-C. (2012). Zählen und Rechnen mit den Fingern: Hilfe, Sackgasse oder bloßer Übergang auf dem Weg zu komplexen arithmetischen Kompetenzen? Lernen und Lernstörungen, 1, 63–71. First citation in articleLinkGoogle Scholar

  • Morrow, R. L. , Garland, E. J. , Wright, J. M. , Maclure, M. , Taylor, S. , Dormuth, C. R. (2012). Influence of relative age on diagnosis and treatment of attention-deficit/hyperactivity disorder in children. Canadian Medical Association Journal, 184, 755–762. First citation in articleCrossrefGoogle Scholar

  • Müller, B. , Richter, T. , Križan, A. , Hecht, T. , Ennemoser, M. (2012). Evidenzbasierte Leseförderung in der Grundschule – Vorstellung einer Interventionsstudie. Diskurs Kindheits- und Jugendforschung, 2, 213–220. First citation in articleGoogle Scholar

  • Nicolson, R. I. , Fawcett, A. J. (1995). Dyslexia is more than a phonological disability. Dyslexia, 1, 19–36. First citation in articleGoogle Scholar

  • Paulesu, E. , Demonet, J. F. , Fazio, F. , McCrory, E. , Chanoine, V. , Brundwick, N. ... Frith, U. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291, 2165–2167. First citation in articleCrossref MedlineGoogle Scholar

  • Petermann, F. (2008). Lehrbuch der Klinischen Kinderneuropsychologie (8. Auflage). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Petermann, F. , Lepach, A. C. (2007). Klinische Kinderneuropsychologie. Kindheit und Entwicklung, 16, 1–6. First citation in articleLinkGoogle Scholar

  • Precht, R. D. (2013). Anna, die Schule und der liebe Gott. Der Verrat des Bildungssystems an unseren Kindern. München: Goldmann. First citation in articleGoogle Scholar

  • Pugh, K. R. , Mencl, W. E. , Jenner, A. R. , Katz, L. , Frost, S. J. , Lee, J. R. ... Shaywitz, B. A. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities Research Reviews, 6, 207–213. First citation in articleCrossref MedlineGoogle Scholar

  • Ramus, F. , Rosen, S. , Dakin, S. C. , Day, B. L. , Castellote, J. M. , White, S. et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126, 841–865. First citation in articleCrossref MedlineGoogle Scholar

  • Raschle, N. M. , Zuk, J. , Gaab, N. (2012). Functional characteristics of developmental dyslexia in left hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the USA, 109, 2156–2161. First citation in articleGoogle Scholar

  • Richlan, F. (2012). Developmental dyslexia: dysfunction of a left hemisphere reading network. Frontiers in Human Neuroscience, 6, 1–5. First citation in articleCrossref MedlineGoogle Scholar

  • Richlan, F. , Kronbichler, M. , Wimmer, H. (2011). Meta-analyzing brain dysfunctions in dyslexic children and adults. Neuroimage, 56, 1735–1742. First citation in articleCrossref MedlineGoogle Scholar

  • Roth, E. & Schneider, W. (2002). Langzeiteffekte einer Förderung der phonologischen Bewusstheit und der Buchstabenkenntnis auf den Schriftspracherwerb. Zeitschrift für Pädagogische Psychologie, 16, 99–107. First citation in articleLinkGoogle Scholar

  • Rückert, E. M. , Plattner, A. , Schulte-Körne, G. (2010). Wirksamkeit eines Elterntrainings zur Prävention von Lese-Rechtschreibschwierigkeiten. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 38, 169–179. First citation in articleLinkGoogle Scholar

  • Rueda, M. R. , Fan, J. , McCandliss, B. D. , Halparin, J. D. , Gruber, D. B. , Lercari, L. P. , Posner, M. I. (2004). Development of attention networks in childhood. Neuropsychologia, 42, 1029–1040. First citation in articleCrossref MedlineGoogle Scholar

  • Ruff, H. A. & Rothbart, M. K. (1996). Attention in early development: Themes and variations. New York: Oxford University Press. First citation in articleGoogle Scholar

  • Ruland, A. , Willmes, K. & Günther, T. (2012). Zusammenhang zwischen Aufmerksamkeitsdefiziten und Lese-Rechtschreibschwäche. Kindheit und Entwicklung, 21, 57–63. First citation in articleLinkGoogle Scholar

  • Sandak, R. , Mencl, W. E. , Frost, S. J. , Pugh, K. R. (2004). The neurobiological basis of skilled and impaired reading: Recent findings and new directions. Scientific Studies of Reading, 8, 273–292. First citation in articleCrossrefGoogle Scholar

  • Savage, R. , Pillay, V. & Melidona, S. (2007). Deconstructing rapid automatized naming: Component processes and the prediction of reading difficulties. Learning and Individual Differences, 17, 129–146. First citation in articleCrossrefGoogle Scholar

  • Schlack, R. , Hölling, H. , Kurth, B.-M. , Huss, M. (2007). Die Prävalenz der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) bei Kindern und Jugendlichen in Deutschland. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz, 50, 827–835. First citation in articleCrossref MedlineGoogle Scholar

  • Schlaggar, B. L. , McCandliss, B. D. (2007). Development of neural systems für reading. Annual Review of Neuroscience, 30, 475–503. First citation in articleCrossref MedlineGoogle Scholar

  • Schnitzler, C. D. (2008). Phonologische Bewusstheit und Schriftspracherwerb. Stuttgart: Thieme. First citation in articleCrossrefGoogle Scholar

  • Schulministerium Nordrhein-Westfalen. (Hrsg.). (2008). Sammelband Lehrpläne Grundschule. Frechen: Ritterbach. First citation in articleGoogle Scholar

  • Schulte-Körne, G. (2001). Genetics of reading and spelling disorder. Journal of Child Psychology and Psychiatry, 42, 985–997. First citation in articleCrossref MedlineGoogle Scholar

  • Schulte-Körne, G. , Ludwig, K. U. , Sharkawy, J. , Nöthen, M. , Müller-Myhsok, B. , Hoffmann, P. (2007). Genetics and neuroscience in dyslexia: Perspectives for education and remediation. Mind, Brain and Education, 1, 162–172. First citation in articleCrossrefGoogle Scholar

  • Schulz, E. , Maurer, U. , van der Mark, S. , Bucher, K. , Brem, S. , Martin, E. , Brandeis, D. (2008). Impaired semantic processing during sentence reading in children with dyslexia: Combined fMRI and ERP evidence. Neuroimage, 41, 153–168. First citation in articleCrossref MedlineGoogle Scholar

  • Schumacher, R. , Stern, E. (2012). Neurowissenschaften und Lehr-Lern-Forschung: Welches Wissen trägt zu lernwirksamem Unterricht bei? DDS – Die Deutsche Schule, 4, 383–396. First citation in articleGoogle Scholar

  • Schumann-Hengsteler, R. , Strobl, M. , Zoelch, C. (2004). Temporal memory for locations: On the coding of spatio-temporal information in children and adults. In G. Allen, (Ed.), Human spatial memory: Remembering where (pp. 101–124). New York: Erlbaum. First citation in articleGoogle Scholar

  • Shallice, T. , Burgess, P. (1991). Higher-order cognitive impairment and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, A. L. Benton, (Eds.), Frontal lobe function and dysfunction (pp. 1125–1138). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Shaywitz, B. A. , Shaywitz, S. E. , Pugh, K. R. , Mencl, W. E. , Fulbright, R. K. , Skudlarski, P. ... Gore, J. C. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101–110. First citation in articleCrossref MedlineGoogle Scholar

  • Simos, P. G. , Fletcher, J. M. , Bergmann, E. , Breier, J. I. , Foorman, B. R. , Castillo, E. M. ... Papanicolaou, A. C. (2002). Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology, 58, 1203–1213. First citation in articleCrossref MedlineGoogle Scholar

  • Smith, E. E. , Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. First citation in articleCrossref MedlineGoogle Scholar

  • Snowball, A. , Tachtsidis, I. , Popescu, T. , Thompson, J. , Delazer, M. , Zamarian, L. ... Cohen Kadosh, R. (2013). Long-term enhancement of brain function and cognition using cognitive training and brain stimulation. Current Biology, 23, 987–992. First citation in articleCrossref MedlineGoogle Scholar

  • Spitzer, M. (2002). Lernen. Gehirnforschung und die Schule des Lebens. Heidelberg/Berlin: Spektrum. First citation in articleGoogle Scholar

  • Spitzer, M. (2004). Selbstbestimmen. Gehirnforschung und die Frage: Was sollen wir tun? Heidelberg/Berlin: Spektrum. First citation in articleGoogle Scholar

  • Stein, J. (2003). Visual motor sensitivity and reading. Neuropsychologia, 41, 1785–1793. First citation in articleCrossref MedlineGoogle Scholar

  • Steinhausen, H.-C. (2006). Schule und psychische Störungen. Stuttgart: Kohlhammer. First citation in articleGoogle Scholar

  • Stern, E. (2004). Wie viel Hirn braucht die Schule? Chancen und Grenzen einer neuropsychologischen Lehr-Lern-Forschung. Zeitschrift für Pädagogik, 50, 531–538. First citation in articleGoogle Scholar

  • Stern, E. (2005). Pedagogy meets neuroscience. Science, 310, 745. First citation in articleCrossref MedlineGoogle Scholar

  • Stern, E. , Grabner, R. & Schumacher, R. (2005). Lehr-Lern-Forschung und Neurowissenschaften: Erwartungen, Befunde und Forschungsperspektiven. Reihe Bildungsreform, Band 13. Berlin: Bundesministerium für Bildung und Forschung (BMBF). First citation in articleGoogle Scholar

  • Sturm, W. & Zimmermann, P. (2000). Aufmerksamkeitsstörungen. In W. Sturm, M. Herrmann, C. W. Wallesch, (Hrsg.), Lehrbuch der Klinischen Neuropsychologie (S. 345–365). Lisse: Swets & Zeitlinger. First citation in articleGoogle Scholar

  • Supekar, K. , Musen, M. , Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biol 7: e1000157 First citation in articleGoogle Scholar

  • Szucs, D. (2005). Teachers can substantially inform cognitive psychological and cognitive neuroscience research. The Journal of the Professional Association of Teachers of Students with Specific Learning Disabilities, 18, 4–7. First citation in articleGoogle Scholar

  • Szucs, D. & Goswami, U. (2007). Educational Neuroscience: Defining a new discipline for the study of mental representation. Mind, Brain, and Education, 1, 114–127. First citation in articleCrossrefGoogle Scholar

  • Temple, E. , Deutsch, G. K. , Poldrack, R. A. , Miller, S. L. , Tallal, P. , Merzenich, M. M. , Gabrieli, J. D. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences USA, 100, 2860–2865. First citation in articleGoogle Scholar

  • Thaler, V. , Ebner, E. M. , Wimmer, H. , Landerl, K. (2004). Training reading fluency in dysfluent readers with high reading accuracy: Word specific effects but low transfer to untrained words. Annals of Dyslexia, 54, 89–113. First citation in articleCrossref MedlineGoogle Scholar

  • Trick, L. M. , Enns, J. T. (1998). Lifespan changes in attention: The visual search task. Cognitive Development, 13, 369–386. First citation in articleCrossrefGoogle Scholar

  • Valdois, S. , Bosse, M.-L. , Ans, B. , Carbonnel, S. , Zorman, M. , David, D. & Pellat, J. (2003). Phonological and visual processing deficits can dissociate in developmental dyslexia: Evidence from two case studies. Reading and Writing: An interdisciplinary Journal, 16, 541–572. First citation in articleCrossrefGoogle Scholar

  • Van den Wildenberg, W. P. M. , Van der Molen, M. W. (2004). Developmental trends in simple and selective inhibition of compatible and incompatible responses. Journal of Experimental Child Psychology, 87, 201–220. First citation in articleCrossref MedlineGoogle Scholar

  • Van der Mark, S. , Klaver, P. , Bucher, K. , Maurer, U. , Schulz, E. , Brem, S. ... Brandeis, D. (2011). The left occipitotemporal system in reading: Disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. Neuroimage, 54, 2426–2436. First citation in articleCrossref MedlineGoogle Scholar

  • Van Zomeren, A. H. , Brouwer, W. H. (1994). Clinical neuropsychology of attention. New York: Oxford University Press. First citation in articleGoogle Scholar

  • Vellutino, F. R. , Fletcher, J. M. , Snowling, M. J. , Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45, 2–40. First citation in articleCrossref MedlineGoogle Scholar

  • Vellutino, F. R. , Scanlon, D. M. , Small, S. , Fanuele, D. P. (2006). Response to intervention as a vehicle for distinguishing between children with and without reading disabilities: Evidence for the role of kindergarten and first-grade interventions. Journal of Learning Disabilities, 39, 157–169. First citation in articleCrossref MedlineGoogle Scholar

  • Weaver, J. (2013). Sesame Street provides lessons about natural brain development in children. PLoS Biol, 11(1), e1001463. doi 10.1371/journal.pbio.1001463. First citation in articleCrossref MedlineGoogle Scholar

  • Welsh, M. C. (2002). Developmental and clinical variations in executive functions. In D. L. Molfese, V. J. Molfese, (Eds.), Developmental variations in learning (pp. 139–185). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Williams, B. R. , Ponesse, J. S. , Schachar, R. J. , Logan, G. D. , Tannock, R. (1999). Development of inhibitory control across life span. Developmental Psychology, 35, 205–213. First citation in articleCrossref MedlineGoogle Scholar

  • Willingham, D. T. (2009). Three problems in the marriage of neuroscience and education. Cortex, 45, 544–545. First citation in articleCrossref MedlineGoogle Scholar

  • Wilson, A. J. , Dehaene, S. (2007). Number sense and DD. In D. Coch, K. W. Fischer, G. Dawson, (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–378). New York: Guilford. First citation in articleGoogle Scholar

  • Wimmer, H. & Mayringer, H. (2002). Dysfluent reading in the absence of spelling difficulties: A specific disability in regular orthographies. Journal of Educational Psychology, 94, 272–277. First citation in articleCrossrefGoogle Scholar

  • Wright, I. , Waterman, M. , Prescott, H. , Mordoch-Eaton, D. (2003). A new Stroop-like measure of inhibitory function development: Typical development trends. Journal of Child Psychology and Psychiatry, 44, 561–575. First citation in articleCrossref MedlineGoogle Scholar

  • Ziegler, A. , König, I. R. , Deimel, W. , Plume, E. , Nöthen, M. M. , Propping, P. ... Schulte-Körne, G. (2005). Developmental dyslexia – Recurrence risk estimates from a German bi-center study using the single proband sib pair design. Human Heredity, 59, 136–143. First citation in articleCrossref MedlineGoogle Scholar