Skip to main content
Published Online:https://doi.org/10.1026/0033-3042/a000106

Zusammenfassung. Gegenstand des Beitrags sind die bislang kaum untersuchten Entwicklungsverläufe und das Zusammenwirken von metakognitivem und von bereichsspezifischem Wissen bezogen auf die Leistungsbereiche Deutsch/Lesen und Englisch in den Klassenstufen 5 und 6 der Sekundarstufe. Die hier berichteten Analysen stammen aus einer Teilstichprobe (N = 853) einer im Rahmen des DFG-Schwerpunktprogrammes „Kompetenzmodelle” geförderten Längsschnittuntersuchung zur Entwicklung von Wissenskomponenten (EWIKO). Zur Erfassung des bereichsspezifischen Wissens (Schulleistungen) und des metakognitiven Wissens in den Leistungsbereichen Deutsch/Lesen und Englisch wurden eigene Verfahren konstruiert und pilotiert. Im Beitrag gehen wir zunächst der Frage nach, ob und in welchem Maße es zu Wissenszuwächsen im metakognitiven Wissen und in den Leistungen über einen Zeitraum von 16 Monaten (2 Messzeitpunkte) kommt und inwiefern diese Veränderungen dabei in Abhängigkeit von der besuchten Schulform variieren. Sowohl für die Leistungen als für das metakognitive Wissen zeigen Differenzscore-Modelle bedeutsame Zuwächse, die für den Leistungsbereich Englisch auch in Abhängigkeit von der Schulform variieren. Das zweite Ziel der längsschnittlichen Analysen besteht darin, den relativen Einfluss der bereichsspezifischen Ausgangsleistung und des metakognitiven Wissens auf die spätere Leistungen (Lesekompetenz im Leistungsbereich Deutsch/Lesen und Sprachverstehen im Bereich Englisch) zu untersuchen. Mittels Cross-Lagged-Panel-Analysen konnte u.a. die Annahme bestätigt werden, dass sowohl inter-individuelle Unterschiede als auch intra-individuelle Leistungsentwicklungen in beiden Leistungsbereichen zu bedeutsamen Anteilen durch das metakognitive Wissen der Schülerinnen und Schüler erklärt werden können. Abschließend werden theoretische und praktische Implikationen dieser Befunde diskutiert.


Development and reciprocal effects of metacognitive and domain specific knowledge components in secondary school

Abstract. This paper deals with developmental trends in the achievements of German secondary school students in the subjects German and English, and the interplay between domain-specific knowledge and metacognitive knowledge in producing achievement gains between the beginning of Grade 5 and the middle of Grade 6. To explore this relationship, longitudinal data were collected from 918 Bavarian students participating in the project EWIKO (supported by the German Research Foundation). Academic achievement in the subject of areas of German and English, indicating domain-specific knowledge, and metacognitive knowledge was assessed using instruments developed for this study. The first goal of the study was to find out whether achievement gains in German and English as well as those in metacognitive knowledge would depend on the educational track the students attended during the time of the study (i.e., 16 months). Statistical analyses based on difference-score models revealed substantial gains in both domains, with only the gains in the domain of English showing different trends as a result of educational track. A second major goal was to explore the relative impact of initial domain-specific knowledge and metacognitive knowledge on subsequent achievement in the subject areas of German and English. Results of cross-lagged panel analyses showed that developmental achievement changes could be significantly predicted by individual differences in metacognitive knowledge. Theoretical and practical implications of these findings are discussed.

Literatur

  • Alexander, J. M. , Carr, M. , Schwanenflugel, P. J. (1995). Development of metacognition in gifted children: Directions for future research. Developmental Review, 15, 1–37. First citation in articleCrossrefGoogle Scholar

  • Anderson, J. R. , Reder, L. M. , Simon, H. A. (1996). Situated learning and education. Educational Researcher, 25, 5–11. First citation in articleCrossrefGoogle Scholar

  • Annevirta, T. , Laakkonen, E. , Kinnunen, R. & Vauras, M. (2007) Developmental dynamics of metacognitive knowledge and text comprehension skill in the first primary school years. Metacognition and Learning, 2, 21–39. First citation in articleCrossrefGoogle Scholar

  • Artelt, C. , Naumann, J. , Schneider, W. (2010). Lesemotivation und Lernstrategien. In E. Klieme, C. Artelt, J. Hartig, N. Jude, O. Köller, M. Prenzel, W. Schneider, P. Stanat (Hrsg.), PISA 2009. Bilanz nach einem Jahrzehnt (S. 73–112). Münster: Waxmann. First citation in articleGoogle Scholar

  • Artelt, C. , Neuenhaus, N. (2010). Metakognition und Leistung. In W. Bos, O. Köller, E. Klieme (Hrsg.), Schulische Lerngelegenheiten und Kompetenzentwicklung (S. 127–146). Münster: Waxmann. First citation in articleGoogle Scholar

  • Baker, L. (2005). Developmental differences in metacognition: Implications for metacognitively oriented reading instruction. In S. E. Israel, K. L. Bauserman, K. Kinnucan-Welsch, C. C. Block (Eds.), Metacognition in literacy learning: theory, assessment, instruction, and professional development (pp. 61–79). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Bjorklund, D. F. , Schneider, W. (1996). The interaction of knowledge, aptitude, and strategies in children´s memory performance. Advances in Child Development and Behavior, 26, 59–89. First citation in articleCrossrefGoogle Scholar

  • Borkowski, J. G. , Milstead, M. , Hale, C. (1988). Components of children’s metamemory: Implications for strategy generalization. In F. E. Weinert, M. Perlmutter (Eds.), Memory development: Universal changes and individual differences (pp. 73–100). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Bransford, J. D. , Brown, A. L. , Cocking, R. R. (Eds.). (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academic Press. First citation in articleGoogle Scholar

  • Brown, A. L. , Bransford, J. D. , Ferrara, R. A. & Campione, J. C. (1983). Learning, remembering, and understanding. In J. H. Flavell, E. M. Markman (Eds.), Handbook of child psychology. Cognitive development (pp. 77–166). New York, NY: Wiley. First citation in articleGoogle Scholar

  • Ceci, S. J. , Liker, J. K. (1986). A day at the races: A study of IQ, expertise, and cognitive complexity. Journal of Experimental Psychology: General, 115, 255–266. First citation in articleCrossrefGoogle Scholar

  • Collins Block, C. , Pressley, M. (Eds.). (2002). Comprehension instruction: Research-based best practices. New York, NY: Guilford. First citation in articleGoogle Scholar

  • Ericsson, K. A. (1996). The acquisition of expert performance: An introduction to some of the issues. In K. A. Ericsson (Ed.), The road to excellence: The acquisition of expert performance in the arts and science, sports and games (pp. 1–50). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Ericsson, K. A. , Charness, N. , Hoffman, R. R. & Feltovich, P. J. (Eds.). (2006). The Cambridge handbook of expertise and expert performance. Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Ericsson, K. A. , Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273–305. First citation in articleCrossrefGoogle Scholar

  • Flavell, J. H. (1971). First discussant’s comments: What is memory development the development of? Human Development, 14, 272–278. First citation in articleCrossrefGoogle Scholar

  • Flavell, J. H. , Miller, P. H. , Miller, S. A. (2002). Cognitive development (4th ed.). Englewood Cliffs, NJ: Prentice-Hall. First citation in articleGoogle Scholar

  • Helmke, A. , Schneider, W. , Weinert, F. E. (1986). Quality of instruction and classroom learning outcomes: The German contribution to the IEA Classroom Environment Study. Teaching and Teacher Education, 2, 1–18. First citation in articleCrossrefGoogle Scholar

  • Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9, 178–181. First citation in articleCrossrefGoogle Scholar

  • Lingel, K. , Neuenhaus, N. , Artelt, C. , Schneider, W. (2010). Metakognitives Wissen in der Sekundarstufe: Konstruktion und Evaluation domänenspezifischer Messverfahren. Zeitschrift für Pädagogik, 56, Beiheft, 228–238. First citation in articleGoogle Scholar

  • McNamara, D. S. (Ed.). (2007). Reading comprehension strategies: Theory, interventions, and technologies. Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Muthén, L. K. , Muthén, B. O. (1998–2010). Mplus user’s guide, 6th ed. Los Angeles, CA: Muthén & Muthén. First citation in articleGoogle Scholar

  • Nelson, T. O. , Narens, L. (1994). Why investigate metacognition? In J. Metcalfe, A. P. Shimamura (Eds.), Metacognition. Knowing about knowing (pp. 1–25). Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Paris, S. G. , Oka, E. R. (1986). Children’s reading strategies, metacognition, and motivation. Developmental Review, 6, 25–56. First citation in articleCrossrefGoogle Scholar

  • Pfost, M. , Karing, K. , Lorenz, C. , Artelt, C. (2010). Schereneffekte im ein- und mehrgliedrigen Schulsystem. Differentielle Entwicklung sprachlicher Kompetenzen am Übergang von der Grund- in die weiterführende Schule? Zeitschrift für Pädagogische Psychologie, 24, 259–272. First citation in articleLinkGoogle Scholar

  • Pressley, M. , Afflerbach, P. (1995). Verbal protocols of reading: The nature of constructively responsive reading. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Schafer, J. L. (1999). Multiple imputation under a normal model, Version 2. Software for Windows 95/98/NT. Retrieved November, 11, 2011, from sites.stat.psu.edu/~jls/misoftwa.html. First citation in articleGoogle Scholar

  • Schlagmüller, M. , Schneider, W. (2007). WLST-7-12. Würzburger Lesestrategie Wissenstest für die Klassen 7 bis 12. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schneider, W. , Bjorklund, D. F. (1992). Expertise, aptitude, and strategic remembering. Child Development, 63, 461–473. First citation in articleCrossrefGoogle Scholar

  • Schneider, W. , Lockl, K. (2002). The development of metacognitive knowledge in children and adolescents. In T. J. Perfect, B. L. Schwartz (Eds.), Applied metacognition (pp. 224–257). Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Schneider, W. , Pressley, M. (1997). Memory development between 2 and 20. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Schunk, D. H. , Zimmerman, B. J. (Eds.). (1998). Self-regulated learning. From teaching to self-reflective practice. New York, NY: Guilford. First citation in articleGoogle Scholar

  • Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21, 360–407. First citation in articleCrossrefGoogle Scholar

  • Stern, E. (2009). The development of mathematical competencies. Sources of individual differences and their developmental trajectories. In W. Schneider, M. Bullock (Eds.), Human development from early childhood to early adulthood (pp. 221–237). New York, NY: Taylor & Francis. First citation in articleGoogle Scholar

  • Treiber, B. , Weinert, F. E. (1985). Gute Schulleistungen für alle? Psychologische Studien zu einer pädagogischen Hoffnung. Münster: Aschendorff. First citation in articleGoogle Scholar

  • van der Linden, W. J. , Hambleton, R. K. (Eds.). (1997). Handbook of modern item response theory. New York, NY: Springer. First citation in articleCrossrefGoogle Scholar

  • Winne, P. H. , Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar