Skip to main content
Originalia

Psychophysische Auswirkungen von akuter körperlicher Belastung im Kontext Schule

Ein Überblick

Published Online:https://doi.org/10.1026/1612-5010/a000062

Akute körperliche Belastung im mittleren Intensitätsbereich kann kognitive Leistungen verbessern. Dies ist ein weiteres Argument, Sport und Bewegung vermehrt in den Schulalltag zu integrieren. Wenig ist jedoch über den zugrunde liegenden Wirkmechanismus bekannt. Die zentrale Annahme dieses Überblicksartikels ist, dass durch akute körperliche Belastung kognitive Fähigkeiten verbessert werden und gleichzeitig die Ausschüttung von Steroidhormonen verändert wird, sodass diese veränderte Hormonkonzentration die kognitive Leistung mit beeinflusst. Befunde zum Zusammenhang von körperlicher Belastung und kognitiver Leistung sowie Steroidhormonen stützen sich häufig auf Daten von Erwachsenen. Aus diesem Grund sollen neuere Studien mit Kindern und Jugendlichen vorgestellt werden, die den Forschungsstand im Wirkdreieck akute körperliche Belastung – kognitive Leistung – Steroidhormonkonzentration sinnvoll ergänzen. Für die Schule können die Ergebnisse dieser Forschung wichtige Hinweise für die Organisation des Schulalltags geben und Möglichkeiten für die Umsetzung von bewegten Pausen aufzeigen.


The psychological effects of acute physical stress in the school context: An overview

Acute physical stress at moderate intensity may enhance cognitive performance. This is another reason for the integration of sport and exercise into daily school life. However, little is known about the mechanisms behind the effect of acute physical stress on cognitive performance. The central point of this review article is that acute physical stress enhances cognitive performance, and, at the same time, affects the release of steroid hormones. Consequently, the shift in hormone concentration is jointly responsible for cognitive changes. Often, reports in support of the association of physical stress and cognitive performance as well as steroid hormones are backed by data from adults. For this reason, recent studies with data from children and adolescents are presented that reasonably complement the triangular effect of acute physical stress – cognitive performance – concentration of steroid hormones. The results of this research may be considered for planning school life and curricula and suggest the potential implementation of breaks for exercising.

Literatur

  • Bateup, H. S. , Booth, A. , Shirtcliff, E. A. , Granger, D. A., (2002). Testosterone, cortisol, and women’s competition.. Evolution and Human Behavior, 23, 181– 192. First citation in articleCrossrefGoogle Scholar

  • Benitez-Sillero, J. D. , Perez-Navero, J. L. , Tasset, I. , Guillen-Del Castillo, M. , Gil-Campos, M. , Tunez, I., (2009). Influence of intense exercise on saliva glutathione in prepubescent and pubescent boys. European Journal of Applied Physiology, 106, 181– 186. First citation in articleCrossrefGoogle Scholar

  • Blair, C. , Granger, D. , Razza, R. P., (2005). Cortisol Reactivity Is Positively Related to Executive Function in Preschool Children Attending Head Start. Child Development, 76, 554– 567. First citation in articleCrossrefGoogle Scholar

  • Brickenkamp, R. (2002). Test d2 Aufmerksamkeits-Belastungs-Test. Manual. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Brisswalter, J. , Collardeau, M. , Rene, A., (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32, 555– 566 First citation in articleCrossrefGoogle Scholar

  • Brownlee, K. K. , Moore, A. W. , Hackney, A. C., (2005). Relationship between circulating cortisol and testosterone: Influence of physical exercise. Journal of Sports Science and Medicine, 4, 76– 83. First citation in articleGoogle Scholar

  • Budde, H. , Pietrassyk-Kendziorra, S. , Bohm, S. , Voelcker-Rehage, C., (2010). Hormonal responses to physical and cognitive stress in a school setting. Neuroscience Letters, 474, 131– 134. First citation in articleCrossrefGoogle Scholar

  • Budde, H. , Voelcker-Rehage, C. , Pietrassyk-Kendziorra, S. , Machado, S. , Ribeiro, P. , Arafat, A. M., (2010). Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting. Psychoneuroendocrinology, 35, 382– 391. First citation in articleCrossrefGoogle Scholar

  • Budde, H. , Voelcker-Rehage, C. , Pietrassyk-Kendziorra, S. , Ribeiro, P. , Tidow, G., (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441, 219– 223. First citation in articleCrossrefGoogle Scholar

  • Budde, H. , Windisch, C. , Kudielka, B. M. , Voelcker-Rehage, C., (2010). Saliva cortisol in school children after acute physical exercise. Neuroscience Letters, 483, 16– 19. First citation in articleCrossrefGoogle Scholar

  • Budde, H. , Windisch, C. , Voelcker-Rehage, C., (2011). Veränderungen der Testosteronkonzentration im Speichel von Grundschülern nach einer akuten körperlichen Belastung. In A. Woll, K. Bös, G. Huber, R. Kemper, M. Knoll, I. Pahmeier, G. Sudeck, L. Vogt, S. Spengler & E. Peterhans (Hrsg.). Kinder bewegen - wissenschaftliche Energien bündeln. Tagungsband der Jahrestagung der dvs-Kommission Gesundheit (S. 48). Karlsruhe: dvs. First citation in articleGoogle Scholar

  • Daly, W. , Seegers, C. A. , Rubin, D. A. , Dobridge, J. D. , Hackney, A. C., (2005). Relationship between stress hormones and testosterone with prolonged endurance exercise.. European Journal of Applied Physiology, 93, 375– 380. First citation in articleCrossrefGoogle Scholar

  • Di Luigi, L. , Baldari, C. , Gallotta, M. C. , Perroni, F. , Romanelli, F. , Lenzi, A. et al. (2006). Salivary steroids at rest and after a training load in young male athletes: relationship with chronological age and pubertal development.. International Journal of Sports Medicine, 27, 709– 717. First citation in articleCrossrefGoogle Scholar

  • Dickerson, S. S. , Kemeny, M. E., (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355– 391 First citation in articleGoogle Scholar

  • Elzinga, B. M. , Roelofs, K., (2005). Cortisol-induced impairments of working memory require acute sympathetic activation. Behavioral Neuroscience, 119, 98– 103. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. , Drevets, W. , Schulkin, J., (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews, 27, 233– 246. First citation in articleCrossrefGoogle Scholar

  • Etnier, J. L. , Salazar, W. , Landers, D. M. , Petruzzello, S. J. , Han, M. , Nowell, P. M. (1997). The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. Journal of Sport and Exercise Psychology, 19, 249– 277 First citation in articleCrossrefGoogle Scholar

  • Gatti, R. , De Palo, E. F., (2010). An update: salivary hormones and physical exercise. Scandinavian Journal of Medicine & Science in Sports, no. doi: 10.1111/j.1600-0838.2010.01252.x. First citation in articleGoogle Scholar

  • Gold, J. M. , Carpenter, C. , Randolph, C. , Goldberg, T. E. , Weinberger, D. R., (1997). Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Archives of General Psychiatry, 54, 159– 165. First citation in articleCrossrefGoogle Scholar

  • Gouchie, C. , Kimura, D., (1991). The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology, 16, 323– 334. First citation in articleCrossrefGoogle Scholar

  • Gunnar, M. R. , Quevedo, K., (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145– 173. First citation in articleCrossrefGoogle Scholar

  • Gunnar, M. R. , Wewerka, S. , Frenn, K. , Long, J. D. , Griggs, C., (2009). Developmental changes in hypothalamus-pituitary-adrenal activity over the transition to adolescence: normative changes and associations with puberty. Development and Psychopathology, 21, 69– 85. First citation in articleCrossrefGoogle Scholar

  • Hackney, A. C. (2008). Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. Journal of Endocrinological Investigation, 31, 932– 938. First citation in articleCrossrefGoogle Scholar

  • Heffelfinger, A. K. , Newcomer, J. W., (2001). Glucocorticoid effects on memory function over the human life span. Development and Psychopathology, 13, 491– 513. First citation in articleCrossrefGoogle Scholar

  • Helmich, I. , Latini, A. S. , Sigwalt, A. , Carta, M. G. , Machado, S. , Velasques, B. et al. (2010). Neurobiological alterations induced by exercise and their impact on depressive disorders. Clinical Practice and Epidemiology in Mental Health, 6, 115– 125. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Erickson, K. I. , Kramer, A. F., (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58– 65. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Pontifex, M. B. , Raine, L. B. , Castelli, D. M. , Hall, E. E. , Kramer, A. F., (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159, 1044– 1054. First citation in articleCrossrefGoogle Scholar

  • Hoffman, R. , al’Absi, M., (2004). The effect of acute stress on subsequent neuropsychological test performance. Archives of Clinical Neuropsychology, 19, 497– 506. First citation in articleCrossrefGoogle Scholar

  • Ihle, W. , Esser, G., (2002). Epidemiologie psychischer Störungen im Kindes- und Jugendalter. Psychologische Rundschau, 53, 159– 169. First citation in articleLinkGoogle Scholar

  • Janowsky, J. S. (2006). Thinking with your gonads: testosterone and cognition. Trends in Cognitive Sciences, 10, 77– 82. First citation in articleCrossrefGoogle Scholar

  • Johansson, G. G. , Karonen, S. L. , Laakso, M. L., (1983). Reversal of an elevated plasma level of prolactin during prolonged psychological stress. Acta Physiologica Scandinavica, 119, 463– 464. First citation in articleCrossrefGoogle Scholar

  • Kiess, W. , Meidert, A. , Dressendorfer, R. A. , Schriever, K. , Kessler, U. , Konig, A. et al. (1995). Salivary cortisol levels throughout childhood and adolescence: relation with age, pubertal stage, and weight. Pediatric Research, 37, 502– 506. First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C. , Hellhammer, D. H., (1994). Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology, 19, 313– 333. First citation in articleCrossrefGoogle Scholar

  • Kuhlmann, S. , Piel, M. , Wolf, O. T., (2005). Impaired memory retrieval after psychosocial stress in healthy young men. Journal of Neuroscience, 25, 2977– 2982. First citation in articleCrossrefGoogle Scholar

  • Kurth, B. M. , Schaffrath, R. A., (2007). The prevalence of overweight and obese children and adolescents living in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 50, 736– 743. First citation in articleCrossrefGoogle Scholar

  • Lambourne, K. , Tomporowski, P., (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12– 24. First citation in articleCrossrefGoogle Scholar

  • Lupien, S. J. , Wilkinson, C. W. , Briere, S. , Menard, C. , Ng Ying Kin, N. M. , Nair, N. P., (2002). The modulatory effects of corticosteroids on cognition: studies in young human populations. Psychoneuroendocrinology, 27, 401– 416. First citation in articleCrossrefGoogle Scholar

  • Maass, A. , Lohaus, A. , Wolf, O. T., (2010). Media and stress in adolescent boys in Germany. Journal of Children and Media, 4, 18– 38. First citation in articleCrossrefGoogle Scholar

  • Maresh, C. M. , Cook, M. R. , Cohen, H. D. , Graham, C. , Gunn, W. S., (1988). Exercise testing in the evaluation of human responses to powerline frequency fields. Aviation, Space and Environmental Medicine, 59, 1139– 1145. First citation in articleGoogle Scholar

  • Marshall, W. A. , Tanner, J. M., (1969). Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood, 44, 291– 303. First citation in articleCrossrefGoogle Scholar

  • Marshall, W. A. , Tanner, J. M., (1970). Variations in the pattern of pubertal changes in boys. Archives of Disease in Childhood, 45, 13– 23. First citation in articleCrossrefGoogle Scholar

  • Moffat, S. D. , Hampson, E., (1996). A curvilinear relationship between testosterone and spatial cognition in humans: possible influence of hand preference. Psychoneuroendocrinology, 21, 323– 337. First citation in articleCrossrefGoogle Scholar

  • Monk, C. S. , Nelson, C. A., (2002). The effects of hydrocortisone on cognitive and neural function: a behavioral and event-related potential investigation. Neuropsychopharmacology, 26, 505– 519. First citation in articleCrossrefGoogle Scholar

  • Morris, M. , Salmon, P. , Steinberg, H. , Sykes, E. A. , Bouloux, P. , Newbould, E. et al. (1990). Endogenous opioids modulate the cardiovascular response to mental stress. 15, Psychoneuroendocrinology, 185– 192. First citation in articleGoogle Scholar

  • Muller, M. , Aleman, A. , Grobbee, D. E. , de Haan, E. H. , van der Schouw, Y. T., (2005). Endogenous sex hormone levels and cognitive function in aging men: is there an optimal level?. Neurology, 64, 866– 871. First citation in articleCrossrefGoogle Scholar

  • O’Connor, P. J. , Corrigan, D. L., (1987). Influence of short-term cycling on salivary cortisol levels. Medicine and Science in Sports and Exercise, 19, 224– 228. First citation in articleGoogle Scholar

  • Oei, N. Y. , Everaerd, W. T. , Elzinga, B. M. , Well van, S. , Bermond, B., (2006). Psychosocial stress impairs working memory at high loads: an association with cortisol levels and memory retrieval. Stress, 9, 133– 141. First citation in articleCrossrefGoogle Scholar

  • Rosmond, R. , Bjorntorp, P., (2001). New targets for the clinical assessment of salivan cortisol secretion. Journal of Endocrinological Investigation, 24, 639– 641. First citation in articleCrossrefGoogle Scholar

  • Shangguan, F. , Shi, J., (2009). Puberty timing and fluid intelligence: a study of correlations between testosterone and intelligence in 8- to 12-year-old Chinese boys. Psychoneuroendocrinology, 34, 983– 988. First citation in articleCrossrefGoogle Scholar

  • Sibley, B. A. , Etnier, J. L., (2003). The relationship between physical activity and cognition in children: a meta analysis. Pediatric Exercise Science, 15, 243– 256. First citation in articleCrossrefGoogle Scholar

  • Suay, F. , Salvador, A. , González-Bono, E. , Sanchís, C. , Martínez, M. , Martínez-Sanchis, S. et al. (1999). Effects of competition and its outcome on serum testosterone, cortisol and prolactin.. Psychoneuroendocrinology, 24, 551– 566. First citation in articleCrossrefGoogle Scholar

  • Thomas, N. E , Leyshon, A. , Hughes, M. G. , Davies, B. , Graham, M. , Baker, J. S., (2009). The effect of anaerobic exercise on salivary cortisol, testosterone, and immunoglobulin (A) in boys aged 15-16 years. European Journal of Applied Physiology, 107, 455– 461. First citation in articleCrossrefGoogle Scholar

  • Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112, 297– 324. First citation in articleCrossrefGoogle Scholar

  • Tremblay, M. S. , Copeland, J. L. , van Helder, W., (2004). Effect of training status and exercise mode on endogenous steroid hormones in men. Journal of Applied Physiology, 96, 531– 539. First citation in articleCrossrefGoogle Scholar

  • Viau, V. (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology, 14, 506– 513. First citation in articleCrossrefGoogle Scholar

  • Viru, A. (1985). The pituitary-adrenocortical system. In A. Viru (Ed.). Hormones in muscular activity, (pp. 25– 60). Boca Raton: CRC Press. First citation in articleGoogle Scholar

  • Wilkerson, J. E. , Horvath, S. M. , Gutin, B., (1980). Plasma testosterone during treadmill exercise. Journal of Applied Physiology, 49, 249– 253. First citation in articleCrossrefGoogle Scholar

  • Wolf, O. T. , Convit, A. , McHugh, P. F. , Kandil, E. , Thorn, E. L. , De Santi, S. et al. (2001). Cortisol differentially affects memory in young and elderly men. Behavioral Neuroscience, 115, 1002– 1011. First citation in articleCrossrefGoogle Scholar

  • Wolf, O. T. , Kirschbaum, C., (2002). Endogenous estradiol and testosterone levels are associated with cognitive performance in older women and men. Horm.Behav., 41, 259– 266. First citation in articleCrossrefGoogle Scholar

  • Wolf, O. T. , Preut, R. , Hellhammer, D. H. , Kudielka, B. M. , Schurmeyer, T. H. , Kirschbaum, C., (2000). Testosterone and cognition in elderly men: a single testosterone injection blocks the practice effect in verbal fluency, but has no effect on spatial or verbal memory. Biological Psychiatry, 47, 650– 654. First citation in articleCrossrefGoogle Scholar

  • Zitzmann, M. , Nieschlag, E., (2001). Testosterone levels in healthy men and the relation to behavioural and physical characteristics: facts and constructs. European Journal of Endocrinology, 144, 183– 197. First citation in articleCrossrefGoogle Scholar