Skip to main content
Published Online:https://doi.org/10.1026/1612-5010/a000085

Es findet sich eine zunehmende Zahl an Studien, die den positiven Zusammenhang zwischen physischer Aktivität und kardiovaskulärer Fitness einerseits und kognitiven Fähigkeiten, geistiger Gesundheit und schulischen Leistungen andererseits thematisiert. In diesem Review werden Ergebnisse beschrieben, die eine Beziehung zwischen Fitness und Kognition bei Kindern herstellen. Dadurch wird die Annahme unterstützt, dass gesundheitlich relevante Verhaltensweisen einen Einfluss auf bestimmte Hirngewebe und neuronale Prozesse haben, die für akademische Leistungen verantwortlich sind. Des Weiteren werden Forschungsarbeiten vorgestellt, die kurzfristige Effekte einzelner Einheiten körperlicher Aktivität auf die kognitive und geistige Gesundheit sowie die schulische Leistung untersucht haben. Diese Ergebnisse haben Auswirkungen auf die kognitive Gesundheit und das Lernen sowie die generelle Atmosphäre im Klassenzimmer. Die Auswirkungen dieser Forschungsergebnisse zeigen sich während des Reifungsprozesses in einer Verbesserung der effizienten Funktionsfähigkeit als auch der schulischen Leistungsfähigkeit, so dass daraus eine Vielzahl an Vorteilen für die gesamte Lebensspanne entsteht. In einer Zeit, in der Kinder immer mehr sitzen und unfit werden, sind solche Daten wichtig, um das gesellschaftliche Gesundheitsproblem rückgängig zu machen.


Fitness and cognitive performance in childhood

There is increasing literature that addresses the beneficial relationship of physical activity and cardiorespiratory fitness on aspects of cognitive and brain health in relation to scholastic achievement. In this review, findings are described that relate fitness to cognition in children, providing support for the influence of health behaviors on specific brain tissue and neural processes that support academic achievement. In addition, research examining the transient benefits resulting from participation in single bouts of physical activity on cognitive and brain health and scholastic achievement are described. Such findings have implications for cognitive health and learning, and the overall classroom climate. The implications of this research stand to improve effective functioning and scholastic achievement of individuals during maturation, which might provide a cascade of benefits as individuals progress through the lifespan. In an era in which children are becoming increasingly sedentary and unfit, such data are important toward reversing this public health concern.

Literatur

  • Aron, A. R. , Poldrack, R. A. , Wise, S. P. (2009). Cognition: Basal ganglia role. Encyclopedia of Neuroscience, 2, 1069 – 1077. First citation in articleCrossrefGoogle Scholar

  • Botvinick, M. M. , Braver, T. S. , Barch, D. M. , Carter, C. S. , Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624 – 652. First citation in articleCrossrefGoogle Scholar

  • Buck, S. M. , Hillman, C. H. , Castelli, D. M. (2008). The relation of aerobic fitness to stroop task performance in preadolescent children. Medicine & Science in Sports & Exercise, 40, 166 – 172. First citation in articleCrossrefGoogle Scholar

  • Budde, H. , Voelcker-Rehage, C. , Pietrabyk-Kendziorra, S. , Ribeiro, P. , Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441, 219 – 223. First citation in articleCrossrefGoogle Scholar

  • Carter, C. S. , Braver, T. S. , Barch, D. M. , Botvinick, M. M. , Noll, D. , Cohen, J. D. , (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747 – 749. First citation in articleCrossrefGoogle Scholar

  • Casey, B. J. , Getz, S. , Galvan, A. (2008). The adolescent brain. Developmental Review, 28, 62 – 77. First citation in articleCrossrefGoogle Scholar

  • Caterino, M. C. , Polak, E. D. (1999). Effects of two types of activity on the performance of second-, third-, and fourth-grade students on a test of concentration. Perceptual and Motor Skills, 89, 245 – 248. First citation in articleCrossrefGoogle Scholar

  • Chaddock, L. , Erickson, K. I. , Prakash, R. S. , Kim, J. S. , Voss, M. W. , VanPatter, M. , Kramer, A. F. (2010a). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume and memory performance in preadolescent children. Brain Research, 1358, 172 – 183. First citation in articleCrossrefGoogle Scholar

  • Chaddock, L. , Erickson, K. I. , Prakash, R. S. , VanPatter, M. , Voss, M. W. , Pontifex, M. B. et al. (2010b). Basal ganglia volume is associated aerobic fitness in preadolescent children. Developmental Neuroscience, 32, 249 – 256. First citation in articleCrossrefGoogle Scholar

  • Chaddock, L. , Hillman, C. H. , Buck, S. M. , Cohen, N. J. (2011). Aerobic fitness and executive control of relational memory in preadolescent children. Medicine & Science in Sports & Exercise, 43, 344 – 349. First citation in articleCrossrefGoogle Scholar

  • Cohen, N. J. , Eichenbaum, H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Cohen, N. J. , Ryan, J. , Hunt, C. , Romine, L. , Wszalek, T. , Nash, C. (1999). Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies. Hippocampus, 9, 83 – 98. First citation in articleCrossrefGoogle Scholar

  • Colcombe, S. , Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125 – 130. First citation in articleCrossrefGoogle Scholar

  • Davis, C. L. , Tomporowski, P. D. , McDowell, J. E. , Austin, B. P. , Miller, P. H. , Yanasak, N. E. et al. (2011). Exercise improves executive function and achievement and alters activation in overweight children: A randomized, controlled trial. Health Psychology, 30, 91 – 98. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. , Posner, M. I. , Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science, 5, 303 – 305. First citation in articleCrossrefGoogle Scholar

  • Donchin, E. (1981). Presidential address, 1980. Surprise!.Surprise? Psychophysiology, 18, 493 – 513. First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Coles, M. G. H. (1988). Is the P3 component a manifestation of context updating? Brain Behavioral Science, 11, 357 – 374. First citation in articleCrossrefGoogle Scholar

  • Drollette, E. S. , Shishido, T. , Pontifex, M. B. , Hillman, C. H. (2012). Maintenance of cognitive control during and after walking in preadolescent children. Medicine & Science in Sports & Exercise, 44, 2017 – 2024. First citation in articleCrossrefGoogle Scholar

  • Duncan-Johnson, C. C. (1981). Young Psychophysiologist Award address, 1980. P300 latency: A new metric of information processing. Psychophysiology, 18, 207 – 215. First citation in articleCrossrefGoogle Scholar

  • Etnier, J. L. , Chang, Y.-K. (2009). The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. Journal of Sport & Exercise Psychology, 31, 469 – 483. First citation in articleCrossrefGoogle Scholar

  • Erickson, K. I. , Prakash, R. S. , Voss, M. W. , Chaddock, L. , Hu, L. , Morris, K. S. , Kramer, A. F. (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19, 1030 – 1039. First citation in articleCrossrefGoogle Scholar

  • Fontaine, K. R. , Redden, D. T. , Wang, C. , Westfall, A. O. , Allison, D. B. (2003). Years of life lost due to obesity. Journal of the American Medical Association, 289, 187 – 193. First citation in articleCrossrefGoogle Scholar

  • Gabbard, C. , Barton, J. (1979). Effects of physical activity on mathematical computation among young children. Journal of Physiology, 103, 287 – 288. First citation in articleGoogle Scholar

  • Gehring, W. J. , Goss, B. , Coles, M. G. H. , Meyer, D. E. , Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385 – 390. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Buck, S. M. , Themanson, J. R. , Pontifex, M. B. , Castelli, D. (2009a). Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children. Developmental Psychology, 45, 114 – 129. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Castelli, D. M. , Buck, S. M. (2005). Aerobic fitness and neurocognitive function in healthy preadolescent children. Medicine & Science in Sports & Exercise, 37, 1967 – 1974. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Erickson, K. I. , Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58 – 65. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Pontifex, M. B. , Motl, R. W. , O'Leary, K. C. , Johnson, C. R. , Scudder, M. R. , Castelli, D. M. (2012). From ERPs to academics. Developmental Cognitive Neuroscience, 2S, S90 – S98. First citation in articleCrossrefGoogle Scholar

  • Hillman, C. H. , Pontifex, M. B. , Raine, L. B. , Castelli, D. M. , Hall, E. E. , Kramer, A. F. (2009b). The Effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159, 1044 – 1054. First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B. , Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Science, 109, 679 – 709. First citation in articleGoogle Scholar

  • Ilan, A. B. , Polich, J. (1999). P300 and response time from a manual Stroop task. Clinical Neurophysiology, 110, 367 – 373. First citation in articleCrossrefGoogle Scholar

  • Isaacs, K. R. , Anderson, B. J. , Alcantara, A. A. , Black, J. E. , Greenough, W. T. (1992). Exercise and the brain: Angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. Journal of Cerebral Blood Flow and Metabolism, 12, 110 – 119. First citation in articleCrossrefGoogle Scholar

  • Kutas, M. , McCarthy, G. , Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197, 792 – 795. First citation in articleCrossrefGoogle Scholar

  • Lambourne, K. , Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 1341, 12 – 24. First citation in articleCrossrefGoogle Scholar

  • Magliero, A. , Bashore, T. R. , Coles, M. G. H. , Donchin, E. (1984). On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology, 21, 171 – 186. First citation in articleCrossrefGoogle Scholar

  • McNaughten, D. , Gabbard, C. (1993). Physical exertion and immediate mental performance of sixth-grade children. Perceptual and Motor Skills, 77, 1155 – 1159. First citation in articleCrossrefGoogle Scholar

  • Miltner, W. H. , Lemke, U. , Weiss, T. , Holroyd, C. , Scheffers, M. K. , Coles, M. G. H. (2003). Implementation of error-processing in the human anterior cingulate cortex: A source analysis of the magnetic equivalent of the error-related negativity. Biological Psychology, 64, 157 – 166. First citation in articleCrossrefGoogle Scholar

  • Neeper, S. A. , Gomez-Pinilla, F. , Choi, J. , Cotman, C. W. (1995). Exercise and brain neurotrophins. Nature, 373 (6510), 109. First citation in articleCrossrefGoogle Scholar

  • Ng, S. W. , Popkin, B. M. (2012). Time use and physical activity: A shift away from movement across the globe. Obesity Reviews, 13, 659 – 680. First citation in articleCrossrefGoogle Scholar

  • Olshansky, S. J. , Passaro, D. J. , Hershow, R. C. , Layden, J. , Carnes, B. A. , Brody, J. et al. (2005). A potential decline in life expectancy in the United States in the 21st century. The New England Journal of Medicine, 352, 1138 – 1145. First citation in articleCrossrefGoogle Scholar

  • Pereira, A. C. , Huddleston, D. E. , Brickman, A. M. , Sosunova, A. A. , Hen, R. , McKhann, G. M. et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Science, 104, 5638 – 5643. First citation in articleGoogle Scholar

  • Pesce, C. , Crova, C. , Cereatti, L. , Casella, R. , Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2, 16 – 22. First citation in articleCrossrefGoogle Scholar

  • Polich, J. (1987). Task difficulty, probability and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalography and Clinical Neurophysiology, 63, 251 – 259. First citation in articleCrossrefGoogle Scholar

  • Polich, J. , Heine, M. R. D. (1996). P3 topography and modality effects from a single-stimulus paradigm. Psychophysiology, 33, 747 – 752. First citation in articleCrossrefGoogle Scholar

  • Pontifex, M. B. , Raine, L. B. , Johnson, C. R. , Chaddock, L. , Voss, M. W. , Cohen, N. J. et al. (2011). Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. Journal of Cognitive Neuroscience, 23, 1332 – 1345. First citation in articleCrossrefGoogle Scholar

  • Pontifex, M. B. , Saliba, B. J. , Raine, L. B. , Picchietti, D. L. , Hillman, C. H. (2012). Exercise improves behavioral, neurophysiologic, and scholastic performance in children with ADHD. The Journal of Pediatrics. doi 10.1016/j.jpeds.2012.08.036. First citation in articleGoogle Scholar

  • Sibley, B. A. , Etnier, J. L. (2003). The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exercise Science, 15, 243 – 256. First citation in articleCrossrefGoogle Scholar

  • Tomporowski, P. D. (2003). Cognitive and behavioral responses to acute exercise in youths: A review. Pediatric Exercise Science, 15, 348 – 359. First citation in articleCrossrefGoogle Scholar

  • Tomporowski, P. D. , Davis, C. L. , Lambourne, K. , Gregoski, M. , Tkacz, J. (2008). Task switching in overweight children: Effects of acute exercise and age. Journal of Sport & Exercise Psychology, 30, 497 – 511. First citation in articleCrossrefGoogle Scholar

  • U.S. National Center for Education Statistics . Statistical Abstract of the United States: 2011. Zugriff am 30. Januar 2012 unter www.census.gov/compendia/statab/. First citation in articleGoogle Scholar

  • van Praag, H. , Christie, B. R. , Sejnowski, T. J. , Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences, 96, 13427 – 13431. First citation in articleGoogle Scholar

  • Vaynman, S. , Gomez-Pinilla, F. (2006). Revenge of the “sit”: How lifestyle impacts neuronal and cognitive health though molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84, 699 – 715. First citation in articleCrossrefGoogle Scholar

  • Yeung, N. , Botvinick, M. M. , Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111, 931 – 959. First citation in articleCrossrefGoogle Scholar