Skip to main content
Originalia

Reduzierte geruchliche Sensitivität bei Psychopharmaka-freien Patienten mit Major Depression

Published Online:https://doi.org/10.1026/1616-3443.34.2.79

Zusammenfassung.Theoretischer Hintergrund: Akut depressiv erkrankte Patienten zeigen eine reduzierte geruchliche Sensitivität, die am deutlichsten in Studien mit medikamentös behandelten Patienten beobachtet wurde. Fragestellung: Es sollte untersucht werden, ob die reduzierte geruchliche Sensitivität genuin mit der depressiven Erkrankung zusammenhängt, oder sekundär mit den Effekten antidepressiver Psychopharmaka einhergeht. Methode: Es wurden 11 Psychopharmaka-freie Patienten in einer akuten Episode einer Major Depression untersucht und mit 11 nicht-depressiven Kontroll-Probanden verglichen. Die geruchliche Sensitivität wurde über die absolute Wahrnehmungsschwelle für Phenyl-ethylalkohol und Menthol bestimmt. Außerdem wurde das subjektive Ausmaß der Angenehmheit, Unangenehmheit, Intensität und Bekanntheit der Gerüche erhoben. Ergebnisse: Die geruchlichen Wahrnehmungsschwellen der depressiven Patienten waren signifikant höher als die der Kontroll-Probanden. Die Reduktion der Sensitivität korrelierte mit dem Schweregrad der Erkrankung. Das Ausmaß der Unangenehmheit der Gerüche wurde von den Patienten tendenziell niedriger eingeschätzt. Schlussfolgerungen: Es wird diskutiert, ob Funktionsabweichungen in Geruchs- und emotionsverarbeitenden Gehirn-Gebieten miteinander einhergehen.


Reduced olfactory sensitivity in antidepressant drug free patients with major depression

Abstract.Background: Acute phase depressive patients show a reduced olfactory sensitivity. However, the strongest effects have been demonstrated in patients taking antidepressant drugs. Objective: The study aimed to investigate whether the reduced olfactory sensitivity is directly related to the depressive disorder or secondary to the effects of antidepressant drugs. Methods: 11 antidepressant drug-free patients with major depression were investigated and compared to a group of 11 non- depressive control subjects. Detection threshold tests for phenyl-ethylalcohol and menthol served to determine the level of olfactory sensitivity. Moreover, the subjective magnitude of odor pleasantness, unpleasantness, intensity, and familiarity was investigated. Results: The depressive patients showed higher olfactory thresholds than did the control subjects. Additionally, the reduced olfactory sensitivity was correlated with the severity of depression. The depressive patients tended to evaluate the odors as less unpleasant than did the control subjects. Conclusions: It is discussed whether functional changes in odor and emotion processing areas of the brain are related.

Literatur

  • Amsterdam, J. D., Settle, R. G., Doty, R. L., Abelman, E., Winokur, A. (1987). Taste and smell perception in depression. Biological Psychiatry , 22, 1477–1481. First citation in articleCrossrefGoogle Scholar

  • Carmichael, S. T., Clugnet, M.-C., Price, J. L. (1994). Central olfactory connections in the macaque monkey. The Journal of Comparative Neurology , 346, 403–434. First citation in articleCrossrefGoogle Scholar

  • Chuah, M. I., Hui, B. S. W. (1986). Effect of amitryptiline on laminar differentiation of neonatal rat olfactory bulb. Neuroscience Letters , 70, 28–33. First citation in articleCrossrefGoogle Scholar

  • Cleland, T. A., Linster, C. (2003). Central olfactory structures. In R. L. Doty (Eds.), Handbook of olfaction and gustation, 2nd edition (pp. 165-180). New York: Marcel Dekker. First citation in articleGoogle Scholar

  • Dalton, P. (1996). Odor perception and beliefs about risk. Chemical Senses , 21, 447–458. First citation in articleCrossrefGoogle Scholar

  • Doty, R. L., Smith, R., McKeown, D. A., Raj, J. (1994). Tests of human olfactory funciton: principal components analysis suggests that most measure a common source of variance. Perception & Psychophysics , 56, 701–707. First citation in articleCrossrefGoogle Scholar

  • Drevets, W. C., Videen, T. O., Price, J. L., Preskorn, S. H., Carmichael, S. T., Raichle, M. E. (1992). A functional anatomical study of unipolar depression. The Journal of Neuroscience , 12, 3628–3641. First citation in articleCrossrefGoogle Scholar

  • Farbman, A. I., Gonzales, F., Chuah, M. I. (1988). The effect of amitryptiline on growth of olfactory and cerebral neurons in vitro. Brain Research , 457, 281–286. First citation in articleCrossrefGoogle Scholar

  • Frodl, T., Meisenzahl, E. M., Zetzsche, T., Born, C., Jäger, M., Groll, C., Bottlender, R., Leinsinger, G., Möller, H.-J. (2003). Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biological Psychiatry , 53, 338–344. First citation in articleCrossrefGoogle Scholar

  • Gross-Isseroff, R., Luca-Haimovici, K., Sasson, Y., Kindler, S., Kotler, M., Zohar, J. (1994). Olfactory sensitivity in major depressive disorder and obsessive compulsive disorder. Biological Psychiatry , 35, 798–802. First citation in articleCrossrefGoogle Scholar

  • Hautzinger, M., Bailer, M., Worall, H., Keller, F. (1995). Beck-Depressions-Inventar BDI. Bern: Verlag Hans Huber. First citation in articleGoogle Scholar

  • Jesberger, J. A., Richardson, J. S. (1988). Brain output dysregulation induced by olfactory bulbectomy: An approximation in the rat of major depressive disorder in humans?. International Journal of Neursoscience , 38, 241–165. First citation in articleCrossrefGoogle Scholar

  • Kelly, J. P., Wrynn, A. S., Leonard, B. E. (1997). The olfactory bulbectomized rat as a modell of depression: An update. Pharmacological Therapy , 74, 299–316. First citation in articleCrossrefGoogle Scholar

  • LaBar, K. S., LeDoux, J. E. (2003). Emotional learning circuits in animals and humans. In R. J. Davidson, K. S. Scherer & H. H. Goldsmith (Eds.), Handbook of affective sciences (pp. 52-65). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Lane, R. D., Reiman, E. M., Bradley, M. M., Lang, P., J., Ahern, G. L., Davidson, R. J., Schwartz, G. E. (1997). Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia , 35, 1437–1444. First citation in articleCrossrefGoogle Scholar

  • Laudien, J., Küster, D., Sojka, B., Ferstl, R., Pause, B. M. (2004). Induced helplessness attenuates olfactory stimulus processing. Journal of Psychophysiology , 18, 214– . First citation in articleGoogle Scholar

  • LeDoux, J. (2002). Synaptic self. How our brains become who we are. London: Macmillan. First citation in articleGoogle Scholar

  • Martzke, J. S., Kopala, L. C., Good, K. P. (1997). Olfactory dysfunction in neuropsychiatric desorders: review and methodological considerations. Biological Psychiatry , 42, 721–732. First citation in articleCrossrefGoogle Scholar

  • McCaffrey, R. J., Duff, K., Solomon, G. S. (2000). Olfactory dysfunction discrimintes probable alzheimer‘s dementia from major depression: A cross-validation and extension. Journal of Neurpsychiatry and Clinical Neurosciences , 12, 29–33. First citation in articleCrossrefGoogle Scholar

  • McGaugh, J. L., Cahill, L. (2003). Emotion and memory: central and peripheral contributions. In R. J. Davidson, K. S. Scherer & H. H. Goldsmith (Eds.), Handbook of affective sciences (pp. 93-116). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • McNish, K. A., Davis, M. (1997). Olfactory bulbectomy enhances sensitization of the acoustic startle reflex produced by acute or repeated stress. Behavioral Neuroscience , 111, 80–91. First citation in articleCrossrefGoogle Scholar

  • Moskowitz, H. R., Dravnieks, A., Klarman, L. A. (1976). Odor intensity and pleasantness for a diverse set of odorants. Perception & Psychophysics , 19, 122–128. First citation in articleCrossrefGoogle Scholar

  • Otto, T., Cousens, G., Herzog, C. (2000). Behavioral and neuropsychological foundations of olfactory fear conditioning. Behavioural Brain Research , 110, 119–128. First citation in articleCrossrefGoogle Scholar

  • Pause, B. M., Miranda, A., Göder, R., Aldenhoff, J. B., Ferstl, R. (2001). Reduced olfactory performance in patients with major depression. Journal of Psychiatric Research , 35, 271–277. First citation in articleCrossrefGoogle Scholar

  • Pause, B. M., Miranda, A., Nysterud, M., Ferstl, R. (2000). Geruchs- und emotionale Reiz-Bewertung bei Patienten mit Major Depression. Zeitschrift für Klinische Psychologie und Psychotherapie , 29, 16–25. First citation in articleLinkGoogle Scholar

  • Pause, B. M., Raack, N., Sojka, B., Göder, R., Aldenhoff, J. B., Ferstl, R. (2003). Convergent and divergent effects of odors and emotions in depression. Psychophysiology , 40, 209–225. First citation in articleCrossrefGoogle Scholar

  • Richardson, J. S. (1991). Animal models of depression reflect changing views on the essence and etiology of depressive disorders in humans. Progress in Neuro-Psychopharmacology & Biological Psychiatry , 15, 199–204. First citation in articleCrossrefGoogle Scholar

  • Schiffman, S. S., Zervakis, J., Suggs, M. S., Budd, K. C., Iuga, L. (2000). Effect of tricyclic antidepressants on taste responses in humans and gerbils. Psychopharmacology Biochemistry and Behavior , 65, 599–609. First citation in articleCrossrefGoogle Scholar

  • Serby, M. J., Larson, P. M., Kalkstein, D. (1990). Olfactory sense in psychoses. Biological Psychiatry , 28, 830– . First citation in articleCrossrefGoogle Scholar

  • Serby, M. J., Larson, P. M., Kalkstein, D. (1992). Olfaction and Neuropsychiatry. In M. J. Serby & K. L.Chobor (Eds.), Science of Olfaction (pp. 559-584). New York: Springer Verlag. First citation in articleCrossrefGoogle Scholar

  • Sheline, Y. I., Barch, D. M., Donnelly, J. M., Ollinger, J. M., Snyder, A. Z., Mintun, M. A. (2001). Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study. Biological Psychiatry , 50, 651–658. First citation in articleCrossrefGoogle Scholar

  • Siegle, G. J., Steinhauer, S. R., Thase, M. E., Stenger, V. A., Carter, C. S. (2002). Can‘t shake the feeling: Event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry , 51, 693–707. First citation in articleCrossrefGoogle Scholar

  • Stahl, S. M. (2000). Essential psychopharmacology of depression and bipolar disorder. Cambridge: Cambridge University Press. First citation in articleGoogle Scholar

  • Tebartz van Elst, L., Woermann, F., Lemieux, L., Trimble, M. R. (2000). Increased amygdala volumes in female and derpessed humans. A quantitative magnetic resonance imaging study. Neuroscience Letters , 281, 103–106. First citation in articleCrossrefGoogle Scholar

  • Thomas, H. J., Fries, W., Distel, H. (2002). Bewertung von Geruchsreizen bei depressiv Erkrankten. Nervenarzt , 73, 71–77. First citation in articleCrossrefGoogle Scholar

  • Warner, M. D., Peabody, C. A., Csernansky, J. G. (1990). Olfactory functioning in schizophrenia and depression. Biological Psychiatry , 27, 457–467. First citation in articleCrossrefGoogle Scholar

  • Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neurosscience , 18, 411–418. First citation in articleCrossrefGoogle Scholar

  • Wittchen, H.-U., Zaudig, M., Fydrich, T. (1997). Strukturiertes Klinisches Interview für DSM-IV. Göttingen: Hogrefe-Verlag. First citation in articleGoogle Scholar

  • Wrynn, A. S., Donohoe, N., Leonard, B. E. (1999). A morphological investigation within the anterior cortical nucleus of the amygdala following olfactory bulbectomy. Medical Science Research , 27, 513–515. First citation in articleGoogle Scholar

  • Wrynn, A. S., Mac Sweeney, C. P., Franconi, F., Lemaire, L., Pouliquen, D., Herlidou, S., Leonard, B. E., Gandon, J.-M., de Certaines, J. D. (2000). An in-vivo magnetic resonance imaging study of the olfactory bulbectomized rat model of depression. Brain Research , 897, 193–199. First citation in articleCrossrefGoogle Scholar

  • Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research Reviews , 41, 88–123. First citation in articleCrossrefGoogle Scholar