Skip to main content
Published Online:https://doi.org/10.1027//0269-8803.13.4.234

Abstract In two experiments with four and two groups of healthy subjects, a novel motor task, the voluntary abduction of the right big toe, was trained. This task cannot usually be performed without training and is therefore ideal for the study of elementary motor learning. A systematic variation of proprioceptive, tactile, visual, and EMG feedback was used. In addition to peripheral measurements such as the voluntary range of motion and EMG output during training, a three-channel EEG was recorded over Cz, C3, and C4. The movement-related brain potential during distinct periods of the training was analyzed as a central nervous parameter of the ongoing learning process. In experiment I, we randomized four groups of 12 subjects each (group P: proprioceptive feedback; group PT: proprioceptive and tactile feedback; group PTV: proprioceptive, tactile, and visual feedback; group PTEMG: proprioceptive, tactile, and EMG feedback). Best training results were reported from the PTEMG and PTV groups. The movement-preceding cortical activity, in the form of the amplitude of the readiness potential at the time of EMG onset, was greatest in these two groups. Results of experiment II revealed a similar effect, with a greater training success and a higher electrocortical activation under additional EMG feedback compared to proprioceptive feedback alone. Sensory EMG feedback as evaluated by peripheral and central nervous measurements appears to be useful in motor training and neuromuscular re-education.

References

  • Annett, J. (1969). Feedback and human behavior . Middlesex, UK: Penguin Books . First citation in articleGoogle Scholar

  • Belanger, A.Y. , Chapman, A.E. (1977). Function and training of the abductor hallucis muscle in cases of mild hallux valgus. Physiotherapy Canada, 29, 205– 210 . First citation in articleGoogle Scholar

  • Brudny, J. (1982). Biofeedback in chronic neurological cases: Therapeutic electromyography. In L. White & B. Tursky (Eds.), Clinical biofeedback: Efficacy and mechanisms New York: Guilford Press . First citation in articleGoogle Scholar

  • Brunia, C.H.M. (1981). What is wrong with legs in motor preparation?. In H.H. Kornhuber & L. Deecke (Eds.), Motivation, motor and sensory processes of the brain (Progress in brain research, Vol. 54) (pp. 232-236). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Brunia, C.H.M. , van den Bosch, W.E.J. (1984). Movement-related slow potentials. I. A contrast between finger and foot movements in right-handed subjects. Electroencephalography & Clinical Neurophysiology, 57, 515– 527 . First citation in articleCrossrefGoogle Scholar

  • Deecke, L. (1987). Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. In Ciba Foundation Symposium 132, Motor areas of the cerebral cortex (pp. 231-250). New York: Wiley . First citation in articleGoogle Scholar

  • Deecke, L. (1990). Electrophysiological correlates of movement initialisation. Revue Neurologique Paris, 146, 612– 619 . First citation in articleGoogle Scholar

  • Deecke, L. , Kornhuber, H.H. , Lang, W. , Lang, M. , Schreiber, H. (1985). Timing function of the frontal cortex in sequential motor and learning tasks. Human Neurobiology, 4, 143– 154 . First citation in articleGoogle Scholar

  • Elbert, T. , Lutzenberger, W. , Rockstroh, B. , Birbaumer, N. (1984). Slow brain potentials evoked by voluntary movements and evoked by external stimulation: Common principles. In R. Nodar & C. Barber (Eds.), Evoked potentials II (pp. 435-440). London: Butterworth . First citation in articleGoogle Scholar

  • Elbert, T. , Lutzenberger, W. , Rockstroh, B. , Birbaumer, N. (1986). Response outcome influences the Bereitschaftspotential. In W.C. McCallum, R. Zappoli, & F. Denoth (Eds.), Cerebral psychophysiology: Studies in event-related potentials (pp. 248-250). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Goldberg, G. (1985). Supplementary motor area structure and function: Review and hypothesis. Behavioral Brain Science, 8, 567– 616 . First citation in articleCrossrefGoogle Scholar

  • Jasper, H.H. (1958). The ten-twenty electrode system of the international federation. Electroencephalography & Clinical Neurophysiology, 10, 371– 375 . First citation in articleGoogle Scholar

  • Kornhuber, H.H. (1984). Attention, readiness for action and the stages of voluntary decision - some electrophysiological correlates in man. In O. Creutzfeld, R.F. Schmidt, & W.D. Willis (Eds.), Sensory-motor integration in the nervous system Experimental Brain Research, 69, (Suppl. 9) 420– 429 . First citation in articleCrossrefGoogle Scholar

  • Kornhuber, H.H. , Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen des Menschen: Bereitschaftspotential und reafferente Prozesse. Pflügers Archiv der gesamten Physiologie, 284, 1– 17 . First citation in articleCrossrefGoogle Scholar

  • Kristeva, R. , Cheyne, D. , Lang, W. , Lindinger, G. , Deecke, L. (1990). Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalography & Clinical Neurophysiology, 75, 410– 418 . First citation in articleCrossrefGoogle Scholar

  • Lang, W. , Lang, M. , Kornhuber, A. , Deecke, L. , Kornhuber, H.H. (1983). Human cerebral potentials and visuomotor learning. Pflügers Archiv der gesamten Physiologie, 399, 342– 344 . First citation in articleCrossrefGoogle Scholar

  • Lang, W. , Lang, M. , Kornhuber, A. , Kornhuber, H.H. (1986). Cerebral potentials during hand tracking with inverted feedback: Frontal lobe dominance in human visuo-motor learning. In W.C. McCallum, R. Zappoli, & F. Denoth (Eds.), Cerebral psychophysiology: Studies in event-related potentials (pp. 255-257). Amsterdam: Elsevier . First citation in articleGoogle Scholar

  • Lang, W. , Zilch, O. , Koska, C. , Lindinger, G. , Deecke, L. (1989). Negative cortical DC-shifts preceding and accompanying simple and complex sequential movements. Experimental Brain Research, 74, 99– 104 . First citation in articleCrossrefGoogle Scholar

  • McAdam, D.W. , Seales, D.M. (1969). Bereitschaftspotential enhancement with increased level of motivation. Electroencephalography & Clinical Neurophysiology, 27, 73– 75 . First citation in articleCrossrefGoogle Scholar

  • Middaugh, S.J. (1978). EMG-feedback as a muscular re-education technique: A controlled study. Physical Therapy, 58, 15– 22 . First citation in articleCrossrefGoogle Scholar

  • Middaugh, S.J. , Miller, M.C. , Forster, G. , Ferdon, M.B. (1982). Electromyographic feedback: Effects on voluntary muscle contractions in normal subjects. Archives of Physical Medicine and Rehabilitation, 63, 254– 260 . First citation in articleGoogle Scholar

  • Mulder, T. (1985). The learning of motor control following brain damage . Lisse, NL: Swets & Zeitlinger . First citation in articleGoogle Scholar

  • Mulder, T. (1991). A process-oriented model of human motor behavior: Toward a theory-based rehabilitation approach. Physical Therapy, 71, 157– 164 . First citation in articleCrossrefGoogle Scholar

  • Mulder, T. , Hulstijn, W. (1985a). Sensory feedback in the learning of a novel motor task. Journal of Motor Behavior, 17, 110– 128 . First citation in articleCrossrefGoogle Scholar

  • Mulder, T. , Hulstijn, W. (1985b). Delayed sensory feedback in the learning of a novel motor task. Psychological Research, 47, 203– 209 . First citation in articleCrossrefGoogle Scholar

  • Norusis, M. (1986). SPSS/PC + Statistical package for the social sciences . Chicago: SPSS Inc . First citation in articleGoogle Scholar

  • Salmoni, A.W. , Schmidt, R.A. , Walter, C.B. (1984). Knowledge of results and motor learning: A review and critical appraisal. Psychological Bulletin, 95, 35– 62 . First citation in articleCrossrefGoogle Scholar

  • Schmidt, R.A. (1975). A schema theory of discrete motor skill learning. Psychological Revue, 82, 225– 260 . First citation in articleCrossrefGoogle Scholar

  • Taylor, M.J. (1978). Bereitschaftspotential during the acquisition of a skilled motor task. Electroencephalography & Clinical Neurophysiology, 45, 568– 576 . First citation in articleCrossrefGoogle Scholar

  • Wolf, S.L. (1983). Electromyographic biofeedback applications to stroke patients: A critical review. Physical Therapy, 63, 1448– 1455 . First citation in articleCrossrefGoogle Scholar