Skip to main content
Articles

Olfactory Modulation of Steady- State Visual Evoked Potential Topography in Comparison with Differences in Odor Sensitivity

Published Online:https://doi.org/10.1027//0269-8803.16.2.71

Summary Research was undertaken to determine whether olfactory stimulation can alter steady-state visual evoked potential (SSVEP) topography. Odor-air and air-only stimuli were used to determine whether the SSVEP would be altered when odor was present. Comparisons were also made of the topographic activation associated with air and odor stimulation, with the view toward determining whether the revealed topographic activity would differentiate levels of olfactory sensitivity by clearly identifying supra- and subthreshold odor responses. Using a continuous respiration olfactometer (CRO) to precisely deliver an odor or air stimulus synchronously with the natural respiration, air or odor (n-butanol) was randomly delivered into the inspiratory airstream during the simultaneous recording of SSVEPs and subjective behavioral responses. Subjects were placed in groups based on subjective odor detection response: “yes” and “no” detection groups. In comparison to air, SSVEP topography revealed cortical changes in response to odor stimulation for both response groups, with topographic changes evident for those unable to perceive the odor, showing the presence of a subconscious physiological odor detection response. Differences in regional SSVEP topography were shown for those who reported smelling the odor compared with those who remained unaware of the odor. These changes revealed olfactory modulation of SSVEP topography related to odor awareness and sensitivity and therefore odor concentration relative to thresholds.

References

  • Becker, E. , Hummel, T. , Piel, E. , Pauli, E. , Kobal, G. , Hautsinger, M. (1993). Olfactory event-related potentials in psychosis-prone subjects.. International Journal of Psychophysiology, 15, 51– 58 . First citation in articleCrossrefGoogle Scholar

  • Cadusch, P.J. , Breckon, W. , Silberstein, R.B. (1992). Spherical splines and the interpolation, and transformation of topographic EEG data.. Brain Topography, 5, 52– 52 . First citation in articleGoogle Scholar

  • Ciorciari, J. , Silberstein, R.B. , Simpson, D.G. , Schier, M.A. (1987). The multichannel helmet. In Proceedings of Conference on Engineering and Physical Sciences in Medicine (p. 52). Melbourne . First citation in articleGoogle Scholar

  • Cui, L. , Evans, W.J. (1997). Olfactory event-related potentials to amyl acetate in congenital anosmia.. Electroencephalography & Clinical Neurophysiology, 102, 303– 306 . First citation in articleCrossrefGoogle Scholar

  • Evans, W.J. , Starr, A. (1992). Stimulus parameters and temporal evolution of the olfactory evoked potential in rats.. Chemical Senses, 17, 61– 77 . First citation in articleCrossrefGoogle Scholar

  • Evans, W.J. , Cui, L. , Starr, A. (1995). Olfactory event-related potentials in normal human subjects: Effects of age and gender.. Electroencephalography & Clinical Neurophysiology, 95, 293– 301 . First citation in articleCrossrefGoogle Scholar

  • Hummel, T. , Hummel, C. , Pauli, E. , Kobal, G. (1992). Olfactory discrimination of nicotine-enantiomers by smokers and nonsmokers.. Chemical Senses, 17, 13– 21 . First citation in articleCrossrefGoogle Scholar

  • Hummel, T. , Sekinger, B. , Wolf, S.R. , Pauli, E. , Kobal, G. (1997). “Sniffin' Sticks”: Olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold.. Chemical Senses, 22, 39– 52 . First citation in articleCrossrefGoogle Scholar

  • Kobal, G. , Hummel, T. (1988). Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa.. Electroencephalography & Clinical Neurophysiology, 71, 241– 250 . First citation in articleCrossrefGoogle Scholar

  • Kobal, G. , Hummel, T. (1991). Olfactory evoked potentials in humans.. In T.V. Getchell (Ed.), Smell and taste in health and disease (pp. 255-275). New York: Raven. . First citation in articleGoogle Scholar

  • Kobal, G. , Klimek, L. , Wolfensberger, M. , Gudziol, H. , Temmel, A. , Owen, C.M. , Seeber, H. , Pauli, E. , Hummel, T. (2000). Multicenter investigation of 1.036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds.. European Archives of Otorhinolaryngology, 257, 205– 211 . First citation in articleCrossrefGoogle Scholar

  • Lorig, T.S. (1994). EEG and ERP studies using low-level odor exposure in normal subjects.. Toxicology & Industrial Health, 10, 579– 586 . First citation in articleGoogle Scholar

  • Lorig, T.S. , Herman, K.B. , Schwartz, G.E. , Cain, W.S. (1990). EEG activity during administration of low-concentration odors.. Bulletin of the Psychonomic Society, 28, 405– 408 . First citation in articleCrossrefGoogle Scholar

  • Lorig, T.S. , Huffman, E. , DeMartino, A. , DeMarco, J. (1991). The effects of low concentration odors on EEG activity and behaviour.. Journal of Psychophysiology, 5, 69– 77 . First citation in articleGoogle Scholar

  • Lorig, T.S. , Mayer, T.S. , Moore, F.H. , Warrenburg, S. (1993a). Visual event-related potentials during odor labelling.. Chemical Senses, 18, 379– 387 . First citation in articleCrossrefGoogle Scholar

  • Lorig, T.S. , Sapp, A.C. , Campbell, J. , Cain, W.S. (1993b). Event-related potentials to odor stimuli.. Bulletin of the Psychonomic Society, 31, 131– 134 . First citation in articleCrossrefGoogle Scholar

  • Owen, C.M. , Patterson, J. , Silberstein, R.B. , Simpson, D.G. , Neild, G.E. , Pipingas, A. (1997). Respiratory monitoring and olfactory stimulus delivery apparatus for use with brain electrical activity recording.. Chemical Senses, 22, 765– 765 . First citation in articleGoogle Scholar

  • Owen, C.M. , Patterson, J. , Simpson, D.G. (1999). Development of a continuous respiration olfactometer for synchronous odor delivery during respiration.. In B. Lithgow & I. Cosic (Eds.), IEEE: Biomedical engineering in the 3rd millennium (pp. 65-68). Melbourne: Monash University Press. . First citation in articleGoogle Scholar

  • Papanicolaou, A.C. , Johnstone, J. (1984). Probe evoked potentials: Theory, method and applications.. International Journal of Neuroscience, 24, 107– 131 . First citation in articleCrossrefGoogle Scholar

  • Pipingas, A. , Silberstein, R.B. (1996). SSVEP changes with memory load in a visual vigilance task.. In C. Ogura, Y. Koga, & M. Shimokochi (Eds.), Recent advances in event-related brain potential research (pp. 191-194). Amsterdam: Elsevier. . First citation in articleGoogle Scholar

  • Prah, J.D. , Benignus, V.A. (1992). Olfactory evoked responses to odorous stimuli of different intensities.. Chemical Senses, 17, 417– 425 . First citation in articleCrossrefGoogle Scholar

  • Schier, M.A. (1994). Human steady state visually evoked potential topography and attention. . Unpublished PhD thesis, The University of Melbourne, VIC, Australia. . First citation in articleGoogle Scholar

  • Schwartz, G.E. , Wright, K.P. , Polak, E.H. , Schwartz, J.I. (1991). Conscious and unconscious odor registration in the EEG.. Psychophysiology, 28 (Suppl 3A), 49– 49 . First citation in articleGoogle Scholar

  • Silberstein, R.B. (1995). Steady-state visually evoked potentials, brain resonances, and cognitive processes.. In P. Nunez (Ed.), Neocortical dynamics and human EEG rhythms (pp. 272-303). New York: Oxford University Press. . First citation in articleGoogle Scholar

  • Silberstein, R.B. , Ciorciari, J. , Musci, F. , Schier, M.A. , Simpson, D.G. (1988). Topographic distribution of the steady state visually evoked potential.. Neuroscience Letters, Supplement. 30, 123– 123 . First citation in articleGoogle Scholar

  • Silberstein, R.B. , Schier, M.A. , Pipingas, A. , Ciorciari, J. , Wood, S.R. , Simpson, D.G. (1990a). Steady-state visually evoked potential topography association with a visual vigilance task.. Brain Topography, 3, 337– 347 . First citation in articleCrossrefGoogle Scholar

  • Silberstein, R.B. , Cadusch, P.J. , Schier, M.A. (1990b). Volume conduction effects on spatial principal components analysis of scalp recorded brain electrical activity. Proceedings of first international symposium on brain electromagnetic topography (pp. 273-274). Osaka, Japan. . First citation in articleGoogle Scholar

  • Silberstein, R.B. , Ciorciari, J. , Pipingas, A. (1995). Steady-state visually evoked potential topography during the Wisconsin card sorting test.. Electroencephalography & Clinical Neurophysiology, 96, 24– 35 . First citation in articleCrossrefGoogle Scholar

  • Silberstein, R.B. , Balog, O. , Pipingas, A. (1996a). Auditory and visual recognition tasks and the steady-state visual evoked potential.. In C. Ogura, Y. Koga, & M. Shimokochi (Eds.), Recent advances in event-related brain potential research (pp. 363- 366). Amsterdam: Elsevier. . First citation in articleGoogle Scholar

  • Silberstein, R.B. , Cadusch, P.J. , Nield, G. , Pipingas, A. , Simpson, D.G. (1996b). Steady-state visually evoked potential topography dynamics and cognition.. In C. Ogura, Y. Koga, & M. Shimokochi (Eds.), Recent advances in event-related brain potential research (pp. 379-385). Amsterdam: Elsevier. . First citation in articleGoogle Scholar

  • Silberstein, R.B. , Harris, P.G. , Neild, G.A. , Pipingas, A. (2000). Frontal steady-state potential changes predict long-term recognition memory performance.. International Journal of Psychophysiology, 39, 79– 85 . First citation in articleCrossrefGoogle Scholar