Skip to main content
Published Online:https://doi.org/10.1027/0269-8803.22.2.81

The present study explored modulations in cerebral blood flow and systemic hemodynamics during the execution of a mental calculation task in 41 healthy subjects. Time course and lateralization of blood flow velocities in the medial cerebral arteries of both hemispheres were assessed using functional transcranial Doppler sonography. Indices of systemic hemodynamics were obtained using continuous blood pressure recordings. Doppler sonography revealed a biphasic left dominant rise in cerebral blood flow velocities during task execution. Systemic blood pressure increased, whereas heart period, heart period variability, and baroreflex sensitivity declined. Blood pressure and heart period proved predictive of the magnitude of the cerebral blood flow response, particularly of its initial component. Various physiological mechanisms may be assumed to be involved in cardiovascular adjustment to cognitive demands. While specific contributions of the sympathetic and parasympathetic systems may account for the observed pattern of systemic hemodynamics, flow metabolism coupling, fast neurogenic vasodilation, and cerebral autoregulation may be involved in mediating cerebral blood flow modulations. Furthermore, during conditions of high cardiovascular reactivity, systemic hemodynamic changes exert a marked influence on cerebral blood perfusion.

References

  • Aaslid, R. , Markwalder, T.M. , Nornes, H. (1982). Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. Journal of Neurosurgery, 57, 769–774. First citation in articleCrossrefGoogle Scholar

  • Andreassi, J.L. (2000). Human Behavior and Physiological Response. London: Erlbaum. First citation in articleGoogle Scholar

  • Berntson, G.G. , Lozano, D.L. , Chen, Y.J. (2005). Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology, 42, 246–252. First citation in articleCrossrefGoogle Scholar

  • Biesold, D. , Inanami, O. , Sato, A. , Sato, Y. (1989). Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neuroscience Letters, 98, 39–44. First citation in articleCrossrefGoogle Scholar

  • Buxton, R.B. , Uludag, K. , Dubowitz, D.J. , Liu, T.T. (2004). Modeling the hemodynamic response to brain activation. Neuroimage, 23 Suppl. 1, S220-S233. First citation in articleGoogle Scholar

  • Chillon, J.M. , Baumbach, G.L. (1997). Autoregulation of cerebral blood flow. In K.M.A. Welch, L.R. Caplan, D.J. Reis, B.K. Siesjö, B. Weir (Eds.), Primer on cerebrovascular diseases (pp. 51–54). San Diego, CA: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Chochon, F. , Cohen, L. , van de Moortele, P.F. , Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630. First citation in articleCrossrefGoogle Scholar

  • Claydon, V.E. , Hainsworth, R. (2003). Cerebral autoregulation during orthostatic stress in healthy controls and in patients with posturally related syncope. Clinical Autonomic Research, 13, 321–329. First citation in articleCrossrefGoogle Scholar

  • Conrad, B. , Klingelhöfer, J. (1989). Dynamics of regional cerebral blood flow for various visual stimuli. Experimental Brain Research, 77, 437–441. First citation in articleCrossrefGoogle Scholar

  • Craig, A.D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–666. First citation in articleCrossrefGoogle Scholar

  • Craig, A.D. (2003). Interoception: The sense of the physiological condition of the body. Current Opinion in Neurobiology, 13, 500–505. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (2000). Cerebral bases of number processing and calculation. In S. Gazzaniga (Ed.), The new cognitive neurosciences. London: MIT Press. First citation in articleGoogle Scholar

  • Dehaene, S. , Tzourio, N. , Frak, V. , Raynaud, L. , Cohen, L. , Mehler, J. et al. (1996). Cerebral activations during number multiplication and comparison: A PET study. Neuropsychologia, 34, 1097–1106. First citation in articleCrossrefGoogle Scholar

  • Deppe, M. , Knecht, S. , Henningsen, H. , Ringelstein, E.B. (1997). AVERAGE: A Windows program for automated analysis of event related cerebral blood flow. Journal of Neuroscience Methods, 75, 147–154. First citation in articleCrossrefGoogle Scholar

  • Deppe, M. , Ringelstein, E.B. , Knecht, S. (2004). The investigation of functional brain lateralization by transcranial Doppler sonography. Neuroimage, 21, 1124–1146. First citation in articleCrossrefGoogle Scholar

  • Droste, D.W. , Harders, A.G. , Rastogi, E. (1989). Two transcranial Doppler studies on blood flow velocity in both middle cerebral arteries during rest and the performance of cognitive tasks. Neuropsychologia, 27, 1221–1230. First citation in articleCrossrefGoogle Scholar

  • Drummond, J.C. (1997). The lower limit of autoregulation: Time to revise our thinking? Anesthesiology, 86, 1431–1433. First citation in articleCrossrefGoogle Scholar

  • Duong, T.Q. , Kim, D.S. , Ugurbil, K. , Kim, S.G. (2000). Spatiotemporal dynamics of the BOLD fMRI signals: Toward mapping submillimeter cortical columns using the early negative response. Magnetic Resonance in Medicine, 44, 231–242. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Hadjamu, M. , Schandry, R. (2007). Enhancement of cerebral blood flow and cognitive performance due to pharmacological blood pressure elevation in chronic hypotension. Psychophysiology, 44, 145–153. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2003). Functional transcranial Doppler sonography as a tool in psychophysiological research. Psychophysiology, 40, 436–454. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2004). Cognitive performance and cerebral blood flow in essential hypotension. Psychophysiology, 41, 905–913. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Matthias, E. , Schandry, R. (2005). Essential hypotension is accompanied by deficits in attention and working memory. Behavioral Medicine, 30, 149–158. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2006). Deficient adjustment of cerebral blood flow to cognitive activity due to chronically low blood pressure. Biological Psychology, 72, 311–317. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schandry, R. (2007). Reduced brain perfusion and cognitive performance due to essential hypotension. Clinical Autonomic Research, 17, 69–76. First citation in articleCrossrefGoogle Scholar

  • Duschek, S. , Schuepbach, D. , Schandry, R. (2008). Time-locked association between rapid cerebral blood flow modulation and attentional performance. Clinical Neurophysiology, in press. First citation in articleGoogle Scholar

  • Fukuda, M. , Wang, P. , Moon, C.H. , Tanifuji, M. , Kim, SG. (2006). Spatial specificity of the enhanced dip inherently induced by prolonged oxygen consumption in cat visual cortex: Implication for columnar resolution functional MRI. Neuroimage, 30, 70–87. First citation in articleCrossrefGoogle Scholar

  • Giller, C.A. , Bowman, G. , Dyer, H. , Mootz, L. , Krippner, W. (1993). Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery, 32, 737–741. First citation in articleCrossrefGoogle Scholar

  • Goldberger, J.J. , Le, F.K. , Lahiri, M. , Kannankeril, P.J. , Ng, J. , Kadish, A.H. (2006). Assessment of parasympathetic reactivation after exercise. American Journal of Physiology – Heart and Circulatory Physiology, 290, H2446–H2452. First citation in articleGoogle Scholar

  • Guyton, A.C. , Hall, J.E. (2005). Textbook of medical physiology. Philadelphia: W.B. Saunders. First citation in articleGoogle Scholar

  • Haines, D.E. (2007). Neuroanatomy. An atlas of structures, sections, and systems. Philadelphia: Lippincott, Williams & Wilkins. First citation in articleGoogle Scholar

  • Hajdu, M.A. , Baumbach, G.L. (1994). Mechanisms of large and small cerebral arteries in chronic hypertension. American Journal of Physiology, 35, H1027–H1033. First citation in articleGoogle Scholar

  • Hamel, E. , Vaucher, E. , Tong, X.K. , St-Georges, M. (2002). Neuronal messengers as mediators of microvascular toe in the cerebral cortex. International Congress Series, 1235, 262–276. First citation in articleCrossrefGoogle Scholar

  • Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Reviews Neuroscience, 5, 347–360. First citation in articleCrossrefGoogle Scholar

  • Jauregui-Renault, K. , Hermosillo, A.G. , Marquez, M.F. , Ramos-Aguilar, F. , Hernandez-Goribar, M. , Cardenas, M. (1996). Repeatability of heart rate variability during simple cardiovascular reflex tests on healthy subjects. Archives of Medical Research, 32, 21–26. First citation in articleCrossrefGoogle Scholar

  • Kamarck, T.W. , Jennings, J.R. , Pogue-Geile, M. , Manuck, S.B. (1994). A multidimensional measurement model for cardiovascular reactivity: Stability and cross-validation in two adult samples. Health Psychology, 13, 471–478. First citation in articleCrossrefGoogle Scholar

  • Kelley, R.E. , Chang, J.Y. , Scheinman, N.J. , Levin, B.E. , Duncan, R.C. , Lee, S.C. (1992). Transcranial Doppler assessment of cerebral flow velocity during cognitive tasks. Stroke, 23, 9–14. First citation in articleCrossrefGoogle Scholar

  • Knecht, S. , Henningsen, H. , Deppe, M. , Huber, T. , Ebner, A. , Ringelstein, E.B. (1996). Successive activation of both cerebral hemispheres during cued word generation. Neuroreport, 7, 820–824. First citation in articleCrossrefGoogle Scholar

  • Kolb, B. , Whishaw, I.Q. (2003). Fundamentals of human neuropsychology. New York: Worth. First citation in articleGoogle Scholar

  • Kontos, H.A. (1989). Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke, 20, 1–3. First citation in articleCrossrefGoogle Scholar

  • Lacey, B.C. , Lacey, J.I. (1970). Some autonomic-central nervous system interrelationships. In P. Black (Ed.), Physiological correlations of emotion (pp. 205–227). New York: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Levy, M.N. , Pappano, A.J. (2007). Cardiovascular physiology. Philadelphia: Mosby Elsevier. First citation in articleGoogle Scholar

  • Loewy, A.D. (1990). Central autonomic pathways. In A.D. Loewy, K.M. Spyer (Eds.), Central regulation of autonomic functions (pp. 88–103). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Logothetis, N.K. , Pauls, J. , Trinath, T. , Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157. First citation in articleCrossrefGoogle Scholar

  • Markowitsch, H.J. (2003). Neuroanatomie und Störungen des Gedächtnisses [Neuroanatomy and disorders of memory]. In H.O. Karnath, P. Thier (Eds.), Neuropsychologie [Neuropsychology] (pp. 468–483). Berlin: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Menon, R.S. , Goodyear, B.G. (1999). Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: implications for the vascular point-spread function. Magnetic Resonance in Medicine, 41, 230–235. First citation in articleCrossrefGoogle Scholar

  • Novak, V. , Novak, P. , Spies, J.M. , Low, P.A. (1998). Autoregulation of cerebral blood flow in orthostatic hypotension. Stroke, 29, 104–111. First citation in articleCrossrefGoogle Scholar

  • Parati, G. , di Rienzo, M. , Mancia, G. (2000). How to measure baroreflex sensitivity: From the cardiovascular laboratory to daily life. Journal of Hypertension, 18, 7–19. First citation in articleCrossrefGoogle Scholar

  • Paulson, O.B. (2002). Blood-brain barrier, brain metabolism and cerebral blood flow. European Neuropsychopharmacology, 12, 495–501. First citation in articleCrossrefGoogle Scholar

  • Paulson, O.B. , Strandgaard, S. , Edvinsson, L. (1990). Cerebral autoregulation. Cerebrovascular and Brain Metabolism Reviews, 2, 161–192. First citation in articleGoogle Scholar

  • Penaz, J. , Voigt, A. , Teichmann, W. (1976). Beitrag zur fortlaufenden indirekten Blutdruckmessung [Contribution to continuous indirect blood pressure measurement]. Zeitschrift für die gesamte innere Medizin und ihre Grenzgebiete, 31, 1030–1033. First citation in articleGoogle Scholar

  • Posner, M.I. , Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. First citation in articleCrossrefGoogle Scholar

  • Reyes del Paso, G.A. (1994). A program to assess baroreceptor cardiac reflex function. Behavioral Research Methods, Instruments, & Computers, 26, 62–64. First citation in articleCrossrefGoogle Scholar

  • Reyes del Paso, G.A. , Gonzalez, I. , Hernandez, J.A. (2004). Baroreceptor sensitivity and effectiveness varies differentially as a function of cognitive-attentional demands. Biological Psychology, 67, 385–395. First citation in articleCrossrefGoogle Scholar

  • Roland, P.E. , Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53, 1219–1243. First citation in articleGoogle Scholar

  • Rueckert, L. , Lange, N. , Partiot, A. , Appollonio, I. , Litvar, I. , LeBihan, D. , Grafman, J. (1996). Visualizing cortical activation during mental calculation with functional MRI. NeuroImage, 3, 97–103. First citation in articleCrossrefGoogle Scholar

  • Sándor, P. (1999). Nervous control of the cerebrovascular system: Doubts and facts. Neurochemistry International, 35, 237–259. First citation in articleCrossrefGoogle Scholar

  • Sato, A. , Sato, Y. , Uchida, S. (2001). Regulation of regional cerebral blood flow by cholinergic fibers originating in the basal forebrain. International Journal of Developmental Neuroscience, 19, 327–337. First citation in articleCrossrefGoogle Scholar

  • Schuepbach, D. , Boeker, H. , Duschek, S. , Hell, D. (2007). Rapid cerebral hemodynamic modulation during mental planning and movement execution: evidence of time-locked relationship with complex behavior. Clinical Neurophysiology, 118, 2254–2262. First citation in articleCrossrefGoogle Scholar

  • Sheth, S.A. , Nemoto, M. , Guiou, M.W. , Walker, M.A. , Toga, A.W. (2005). Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity. Journal of Cerebral Blood Flow and Metabolism, 25, 830–841. First citation in articleCrossrefGoogle Scholar

  • Smith, E.E. , Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33, 5–42. First citation in articleCrossrefGoogle Scholar

  • Stegagno, L. , Patritti, D. , Duschek, S. , Herbert, B. , Schandry, R. (2007). Cerebral blood flow in essential hypotension during emotional activation. Psychophysiology, 44, 226–232. First citation in articleCrossrefGoogle Scholar

  • Steptoe, A. , Sawada, Y. (1989). Assessment of baroreceptor reflex function during mental stress and relaxation. Psychophysiology, 26, 140–147. First citation in articleCrossrefGoogle Scholar

  • Steptoe, A. , Vögele, C. (1990). Cardiac baroreceptor reflex function during postural change assessed using noninvasive spontaneous sequence analysis in young men. Cardiovascular Research, 24, 627–632. First citation in articleCrossrefGoogle Scholar

  • Stroobant, N. , Vingerhoets, G. (2000). Transcranial Doppler ultrasonography monitoring of cerebral hemodynamics during performance of cognitive tasks: A review. Neuropsychology Reviews, 10, 213–231. First citation in articleCrossrefGoogle Scholar

  • Sturm, W. , de Simone, A. , Krause, B.J. , Specht, K. , Hesselmann, V. , Radermacher, I. et al. (1999). Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37, 797–805. First citation in articleCrossrefGoogle Scholar

  • Szirmai, I. , Amrein, I. , Pálvögyi, L. , Debreczeni, R. , Kamondi, A. (2005). Correlation between blood flow velocity in the middle cerebral artery and EEG during cognitive effort. Cognitive Brain Research, 24, 33–40. First citation in articleCrossrefGoogle Scholar

  • Thomas, C. , Harer, C. (1993). Simultaneous bihemispherical assessment of cerebral blood flow velocity changes during a mental arithmetic task. Stroke, 24, 614–615. First citation in articleCrossrefGoogle Scholar

  • Thompson, J.K. , Peterson, M.R. , Freeman, R.D. (2004). High-resolution neurometabolic coupling revealed by focal activation of visual neurons. Nature Neuroscience, 7, 919–920. First citation in articleCrossrefGoogle Scholar

  • Toronov, V. , Webb, A. , Choi, J.H. , Wolf, M. , Michalos, A. , Gratton, E. , Hueber, D. (2001). Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Medical Physics, 28, 521–527. First citation in articleCrossrefGoogle Scholar

  • Willmes, K. (2003). Mathematische Leistungen und Akalkulien. In H.O. Karnath, P. Thier (Eds.), Neuropsychologie (pp. 415–435). Berlin: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Yacoub, E. , Shmuel, A. , Pfeuffer, J. , Van De Moortele, P.F. , Adriany, G. , Ugurbil, K. et al. (2001). Investigation of the initial dip in fMRI at 7 Tesla. NMR in Biomedicine, 14, 408–412. First citation in articleCrossrefGoogle Scholar

  • Yasumasu, T. , Reyes del Paso, G.A. , Takahara, K. , Nakashima, Y. (2006). Reduced baroreflex cardiac sensitivity predicts increased cognitive performance. Psychophysiology, 43, 41–45. First citation in articleCrossrefGoogle Scholar