Skip to main content
Articles

Personal Interaction in the Vegetative State

A Data-Mining Study

Published Online:https://doi.org/10.1027/0269-8803.22.3.150

Background and purpose: Brain processing at varying levels of functional complexity and emotional reactions to relatives are anecdotally reported by the caregivers of patients in a vegetative state. In this study, computer-assisted machine-learning procedures were applied to identify heart rate variability changes or galvanic skin responses to a relative’s presence. Methods: The skin conductance (galvanic skin response) and heart beats were continuously recorded in 12 patients in a vegetative state, at rest (baseline) and while approached by a relative (usually the mother; test condition) or by a nonfamiliar person (control condition). The cardiotachogram (the series of consecutive intervals between heart beats) was analyzed in the time and frequency domains by computing the parametric and nonparametric frequency spectra. A machine-learning algorithm was applied to sort out the significant spectral parameter(s). For all patients, each condition (baseline, test, control) was characterized by the values of its spectral parameters, and the association between spectral parameters values and experimental condition was tested (WEKA machine-learning software). Results and comments: A galvanic skin response was obtained in two patients. The machine-learning procedure independently selected the nu_LF spectral parameter and attributed each nu_LF measure to any of the three experimental conditions. 69.4% of attributions were correct (baseline: 58%; test condition: 75%; control. 75%). In seven patients, attribution changed when the subject was approached by the test person; specifically, sequential shifts from baseline to test condition (“the Mom effect”) to control condition were identified in four patients (30.0%); the change from test to control was attributed correctly in seven patients (58%). The observation of heart rate changes tentatively attributable to emotional reaction in a vegetative state suggest residual rudimentary personal interaction, consistent with functioning limbic and paralimbic systems after massive brain damage. Machine-learning proved applicable to sort significant measure(s) out of large samples and to control for statistical alpha inflation.

References

  • Appelhans, B.M. , Luecken, L.J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240. First citation in articleCrossrefGoogle Scholar

  • Appelhans, B.M. , Luecken, L.J. (2007). Heart rate variability and pain: Associations of two interrelated homeostatic processes. Biological Psychology, 12 [Epub ahead of print]. First citation in articleGoogle Scholar

  • Barbieri, R. , Triedman, J.K. , Saul, J.P. (2002). Heart rate control and mechanical cardiopulmonary coupling to assess central volume: A system analysis. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 283, R1210–R1220. First citation in articleCrossrefGoogle Scholar

  • Biswas, A.K. , Scott, W.A. , Sommerauer, J.F. , Luckett, P.M. (2000). Heart rate variability after acute traumatic injury in children. Critical Care Medicine, 28, 3907–3912. First citation in articleCrossrefGoogle Scholar

  • Brown, S. , Martinez, M.J. , Parsone, L.M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport, 5, 2033–2037. First citation in articleGoogle Scholar

  • Chambers, A.S. , Allen, J.J.B. (2002). Vagal tone as an indicator of treatment response in major depression. Psychophysiology, 39, 861–864. First citation in articleCrossrefGoogle Scholar

  • Coleman, M.R. , Rodd, J.M. , Davis, M.H. , Johnsrude, I.S. , Menon, D.K. , Pickard, J.D. , et al. (2007). Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain, 130, 2494–2507 Epub 2007, 7, Comment in Brain, 130, 2482–2483. First citation in articleCrossrefGoogle Scholar

  • Critchley, H.D. , Rotshtein, P. , Nagayi, Y. , O’Doherty, J. , Mathias, C.J. , Dolan, R. (2005). Activity in the human brain predicting heart rate response to emotional facial expression. NeuroImage, 24, 751–762. First citation in articleCrossrefGoogle Scholar

  • Di, H.B. , Yu, S.M. , Weng, X.C. , Laureys, S. , Yu, D. , Li, J.Q. , et al. (2007). Cerebral response to patient’s own name in the vegetative and minimally conscious states. Neurology, 68, 895–899. First citation in articleCrossrefGoogle Scholar

  • Dolce, G. , Sannita, W. (1973). A CNV-like negative shift in deep coma. Electroencephalography and Clinical Neurophysiology, 34, 647–650. First citation in articleCrossrefGoogle Scholar

  • Dolce, G. , Sazbon, L. (Ed.) (2002). The posttraumatic vegetative state. Stuttgart: Thieme. First citation in articleGoogle Scholar

  • Eibe, F. (2004). Machine learning with WEKA. New Zealand: Department of Computer Science, University of Waikato,Retrieved in 2006 from puzzle.dl.sourceforge.net/sourceforge/weka/weka.ppt First citation in articleGoogle Scholar

  • Fraizer, T.W. , Strauss, M.E. , Steinhauer, S. (2004). Respiratory sinus arrhythmia as an index of emotional response in young adults. Psychophysiology, 41, 75–83. First citation in articleCrossrefGoogle Scholar

  • Han, J. , Kamber, M. (Ed.) (2006). Data mining: Concepts and techniques. Department of Computer Science, University of Illinois at Urbana-Champaign. San Francisco: Morgan Kaufman. First citation in articleGoogle Scholar

  • Hildebrandt, H. , Zieger, A. , Engel, A. , Fritz, K.W. , Bussmann, B. (1998). Differentiation of autonomic nervous activity in different stages of coma displayed by power spectrum analysis of heart rate variability. European Archives of Psychiatry and Clinical Neuroscience, 248(1), 46–52. First citation in articleCrossrefGoogle Scholar

  • Holte, R.C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63–90. First citation in articleCrossrefGoogle Scholar

  • Jennett, B. (2002). The vegetative state. Cambridge, UK: University Press. First citation in articleCrossrefGoogle Scholar

  • Jennett, B. , Plum, F. (1972). Persistent vegetative state after brain damage: A syndrome in search of a name. Lancet, 1 (7753), 734–737. First citation in articleCrossrefGoogle Scholar

  • John, E.R. , Lowe, R.S. , Halper, J. , Merkin, H. , Howard, B. , Bernad, P. , et al. (2008). Evidence of cognitive awareness in a vegetative state (VS) patient (case report). Lancet, in press (personal communication). First citation in articleGoogle Scholar

  • Keren, O. , Yapatov, S. , Radai, M.M. , Elad-Yarum, R. , Faraggi, D. , Abboud, S. et al. (2005). Heart rate variability of patients with traumatic brain injury during postinsult subacute period. Brain Injury, 19, 605–611. First citation in articleCrossrefGoogle Scholar

  • King, M.L. , Lichtman, S.W. , Seliger, G. , Ehert, F.A. , Steinberg, J.S. (1997). Heart rate variability in chronic traumatic brain injury. Brain Injury, 11, 445–453. First citation in articleCrossrefGoogle Scholar

  • Kotchoubey, B. , Jetter, U. , Lang, S. , Semmler, A. , Mezger, G. , Schmalohr, D. , et al. (2006). Evidence of cortical learning in vegetative state. Journal of Neurology, 253, 1374–1376. First citation in articleCrossrefGoogle Scholar

  • Lafranchi, P.A. , Somer, V.K. (2003). Arterial baroflex function and cardiovascular variability: Interactions and implications. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 283, R815–R826. First citation in articleCrossrefGoogle Scholar

  • Laureys, S. (2004). Functional neuroimaging in the vegetative state. NeuroRehabilitation, 19, 335–341. First citation in articleCrossrefGoogle Scholar

  • Laureys, S. , Perrin, F. , Brédart, S. (2007). Self-consciousness in noncommunicative patients. Consciousness and Cognition, 16, 722–741; Discussion 742–745. First citation in articleCrossrefGoogle Scholar

  • Laureys, S. , Perrin, F. , Faymonville, M.E. , Schnakers, C. , Boly, M. , Bartsch, V. , et al. (2004). Cerebral processing in the minimally conscious state. Neurology, 63, 916–918. First citation in articleCrossrefGoogle Scholar

  • Laureys, S. , Faymonville, M.E. , Degueldre, C. , Fiore, G.D. , Damas, P. , Lambermont, B. , et al. (2000). Auditory processing in the vegetative state. Brain, 123, 1589–1601. First citation in articleCrossrefGoogle Scholar

  • Lehrer, P.M. , Vaschillo, E. , Vaschillo, B. , Lu, S. , , Eckberg, D.L. , Edelberg, R. , et al. (2003). Heart rate variability biofeedback increase baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65, 796–805. First citation in articleCrossrefGoogle Scholar

  • Levy, D.A. , Granot, R. , Bentin, S. (2003). Neural sensitivity to human voices: ERP evidence of task and attentional influences. Psychophysiology, 40, 291–305. First citation in articleCrossrefGoogle Scholar

  • Luecken, L.J. , Rodriguez, A.P. , Appelhans, B.M. (2005). Cardiovascular stress responses in young adulthood associated with family-of-origin relationship experiences. Psychosomatic Medicine, 67, 514–521. First citation in articleCrossrefGoogle Scholar

  • Machado, C. , Korein, J. , Aubert, E. , Bosch, J. , Alvarez, M.A. , Rodriguez, R. , et al. (2007). Recognizing a mother’s voice in the persistent vegetative state. Clinical EEG and Neuroscience, 38, 124–126. First citation in articleCrossrefGoogle Scholar

  • Malpas, S.C. (2002). Neural influences on cardiovascular variability: possibilities and pitfalls. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 282, H6–H20. First citation in articleGoogle Scholar

  • Mashin, V.A. , Mashina, M.N. (2000). Analysis of the HRV in negative functional states in the course of the psychological relaxation session. Human Physiology, 26, 420–425. First citation in articleCrossrefGoogle Scholar

  • Mehler, J. , Bertoncini, J. , Barriere, M. (1978). Infant recognition of mother’s voice. Perception, 7, 491–497. First citation in articleCrossrefGoogle Scholar

  • Mizuno, K. , Mizuno, N. , Shinohara, T. , Noda, M. (2004). Mother-infant skin-to-skin contact after delivery results in early recognition of own mother’s milk odor. Acta Pediatrica, 93, 1640–1645. First citation in articleCrossrefGoogle Scholar

  • Nikki, S.R. (2004) Intense emotional response to music: A test of the physiological arousal hypothesis. Psychology of Music, 32, 371–388. First citation in articleGoogle Scholar

  • Niskanen, P.J. , Tarvainen, M.P. , , Ranta-aho, P.O. , Karjalainen, P.A. (2004). Software for advanced HRV analysis. University of Kuopio Department of Applied Physics. Computer Methods and Programs Biomedicine, 7 (1), 73–81. First citation in articleCrossrefGoogle Scholar

  • Owen, A.M. , Coleman, M.R. , Menon, D.K. , Johnsrude, I.S. , Rodd, J.M. , Davis, M.H. , et al. (2005). Residual auditory function in persistent vegetative state: A combined PET and fMRI study. Neuropsychological Rehabilitation,15, 290–306. First citation in articleCrossrefGoogle Scholar

  • Owen, A. , Coleman, R.M. , Boly, M. , Davis, M.H. , Laurey, S. , Pickard, J.D. (2006). Detecting awareness in vegetative state. Science, 8 (313), 402. First citation in articleGoogle Scholar

  • Perrin, F. , Schnakers, C. (2006). Brain response to one’s own name in vegetative state, minimally conscious state, and locked-in syndrome. Archives of Neurology, 63, 562–569. First citation in articleCrossrefGoogle Scholar

  • Purhonen, M. , Kilpeläinen-Lees, R. , Valkonen-Korhonen, M. , Karhu, J. , Lehtonen, J. (2005). Four-month-old infants process own mother’s voice faster than unfamiliar voices – Electrical signs of sensitization in infant brain. Cognitive Brain Research, 24, 627–633. First citation in articleCrossrefGoogle Scholar

  • Qiu, J. (2007). Probing islands of consciousness in the damaged brain. Lancet Neurology, 6, 946–947. First citation in articleCrossrefGoogle Scholar

  • Rappaport, M. , McCandless, K.L. , Pond, W. , Krafft, M.C. (1991). Passive P300 response in traumatic brain injury patients. Journal of Neuropsychiatry and Clinical Neuroscience, 3, 180–185. First citation in articleCrossrefGoogle Scholar

  • Reitero, N. , Cividjian, A. , Trevaks, D. , Pequignot, J.M. , Quintin, L. , McAllen, R.M. (2002). Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguous. American Journal of Physiology – Regulatory Integrative and Comparative Physiology, 283, R1327–R1334. First citation in articleCrossrefGoogle Scholar

  • Riganello, F. , Candelieri, A. , Quintieri, M. , Conforti, D. , Dolce, G. (2008). eart rate response to music: An artificial intelligence study on healthy and brain injured subjects. Journal of Psychophysiology, in press. First citation in articleGoogle Scholar

  • Schiff, N.D. , Ribary, U. , Moreno, D.R. , Beattie, B. , Kronberg, E. , Blasberg, R., et al. (2002). Residual cerebral activity and behavioral fragments can remain in the persistently vegetative brain. Brain, 125, 1210–1234. First citation in articleCrossrefGoogle Scholar

  • Schwarz, G. , Pfurtscheller, G. , Litscher, G. , List, W.F. (1987). Quantification of autonomic activity in the brainstem in normal, comatose, and brain-dead subjects using heart rate variability. Functional Neurology, 2, 149–154. First citation in articleGoogle Scholar

  • Sosnowski, T. , Nurzynska, M. , Polec, M. (1991). Active-passive coping and skin conductance and heart rate changes. Psychophysiology, 28, 665–672. First citation in articleCrossrefGoogle Scholar

  • Staffen, W. , Kronbichler, M. , Aichhorn, M. , Mair, A. , Ladurner, G. (2006). Selective brain activity in response to one’s own name in the persistent vegetative state. Journal of Neurology, Neurosurgery, and Psychiatry, 77, 1383–1384. First citation in articleGoogle Scholar

  • Sztajzel, J. (2004). Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Medical Weekly, 134, 514–522. First citation in articleGoogle Scholar

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology of Circulation . (1996). Heart rate variability: Standard of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Urakawa, K. , Yokoyama, K. (2005). Music can enhance exercise-induced sympathetic dominance assessed by HRV. Tohoku Journal of Experimental Medicine, 205, 213–218. First citation in articleCrossrefGoogle Scholar

  • van Bemmel, J.H. , Munsen, M.A. (1997). Handbook of medical informatics. Berlin: Springer-Verlag. First citation in articleGoogle Scholar

  • Wijnen, V.J. , van Boxtel, G.J. , Eilander, H.J. , de Gelder, B. (2007). Mismatch negativity predicts recovery from the vegetative state. Clinica Neurophysiology, 118, 597–605. First citation in articleCrossrefGoogle Scholar

  • Witten, I.H. , Eibe, F. (Ed.) (2005). Data mining – Practical machine learning tools and techniques with Java implementations. San Francisco, CA: Morgan Kaufman. First citation in articleGoogle Scholar

  • Yien, H.W. , Hseu, S.S. , Lee, L.C. , Kuo, T.B. , Lee, T.Y. , Chan, S.H. (1997). Spectral analysis of systemic arterial pressure and heart rate variability as a prognostic tool for the prediction of patient outcome in intensive care unit. Critical Care Medicine, 25, 258–266. First citation in articleCrossrefGoogle Scholar