Skip to main content
Article

The Allocation of Attention in Change Detection and Change Blindness

Published Online:https://doi.org/10.1027/0269-8803/a000172

Abstract. Visual change detection often fails when observers’ attention is distracted by some other visual disruptions in the environment that occur simultaneously with the change. This phenomenon is called change blindness. It has been claimed that selective attention is necessary for successful change detection. In the current experiment, two mechanisms of attention allocation in such a task were investigated. First, the number of distracting stimuli was varied to distract observers’ attention and, second, possible change positions were highlighted to allow observers to better focus on potential change locations. The N2pc component of the event-related potential was measured as an indicator of attentional selection. The results show that the sensitivity for changes increased either when observers were less distracted or when they were able to better focus their attention. However, these two mechanisms were reflected differently by the N2pc component. When observers’ attention was less distracted by a lower number of mudsplashes, the N2pc component occurred earlier. In contrast, when observers were able to better focus their attention on potential change locations, the N2pc component not only occurred earlier but also showed an additional enhancement in amplitude. That is, successful change detection depends on both, the properties of distracting and of changing objects. They determine the speed and intensity of the allocation of attention toward a change.

References

  • Beck, D. M., Rees, G., Frith, C. D. & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645–650. doi: 10.1038/88477 First citation in articleCrossrefGoogle Scholar

  • Becker, M. W., Pashler, H. & Anstis, S. M. (2000). The role of iconic memory in change-detection tasks. Perception, 29, 273–286. doi: 10.1068/p3035 First citation in articleCrossrefGoogle Scholar

  • Brisson, B., Robitaille, N. & Jolicœur, P. (2007). Stimulus intensity affects the latency but not the amplitude of the N2pc. NeuroReport, 18, 1627–1630. doi: 10.1097/WNR.0b013e3282f0b559 First citation in articleCrossrefGoogle Scholar

  • Burnham, B. R. (2007). Displaywide visual features associated with a search display’s appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14, 392–422. doi: 10.3758/bf03194082 First citation in articleCrossrefGoogle Scholar

  • Busch, N. A., Dürschmid, S. & Herrmann, C. S. (2010). ERP effects of change localization, change identification, and change blindness. NeuroReport, 21, 371–375. doi: 10.1097/WNR.0b013e3283378379 First citation in articleCrossrefGoogle Scholar

  • Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215. First citation in articleCrossrefGoogle Scholar

  • Desimone, R. & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/annurev.ne.18.030195.001205 First citation in articleCrossrefGoogle Scholar

  • Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234. doi: 10.1016/0013-4694(96)95711-9 First citation in articleCrossrefGoogle Scholar

  • Eimer, M. & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event-related brain potentials. Journal of Cognitive Neuroscience, 20, 1423–1433. doi: 10.1162/jocn.2008.20099 First citation in articleCrossrefGoogle Scholar

  • Eimer, M. & Kiss, M. (2010). Top-down search strategies determine attentional capture in visual search: Behavioral and electrophysiological evidence. Attention, Perception, & Psychophysics, 72, 951–962. doi: 10.3758/APP.72.4.951 First citation in articleCrossrefGoogle Scholar

  • Eimer, M. & Mazza, V. (2005). Electrophysiological correlates of change detection. Psychophysiology, 42, 328–342. doi: 10.1111/j.1469-8986.2005.00285.x First citation in articleCrossrefGoogle Scholar

  • Fletcher-Watson, S., Leekam, S. R., Turner, M. A. & Moxon, L. (2006). Do people with autistic spectrum disorder show normal selection for attention? Evidence from change blindness. The British Journal of Psychology, 97, 537–554. doi: 10.1348/000712606x114057 First citation in articleCrossrefGoogle Scholar

  • Folk, C. L., Remington, R. W. & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044. doi: 10.1037/0096-1523.18.4.1030 First citation in articleCrossrefGoogle Scholar

  • Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T. & D’Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17, 507–517. doi: 10.1162/0898929053279522 First citation in articleCrossrefGoogle Scholar

  • Green, D. M. & Swets, J. A. (1966). Signal detection theory and psychophysics. Huntington, NY: R.E. Krieger. First citation in articleGoogle Scholar

  • Hillyard, S. A., Vogel, E. K. & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, 1257–1270. doi: 10.1098/rstb.1998.0281 First citation in articleCrossrefGoogle Scholar

  • Jonides, J. & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Perception & Psychophysics, 43, 346–354. doi: 10.3758/BF03208805 First citation in articleCrossrefGoogle Scholar

  • Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51, 1–21. doi: 10.1111/psyp.12147 First citation in articleCrossrefGoogle Scholar

  • Kiss, M. & Eimer, M. (2011). Attentional capture by size singletons is determined by top-down search goals. Psychophysiology, 48, 784–787. doi: 10.1111/j.1469-8986.2010.01145.x First citation in articleCrossrefGoogle Scholar

  • Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7, 12–18. doi: 10.1016/S1364-6613(02)00013-X First citation in articleCrossrefGoogle Scholar

  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Luck, S. J. & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308. doi: 10.1111/j.1469-8986.1994.tb02218.x First citation in articleCrossrefGoogle Scholar

  • Luck, S. J. & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000–1014. doi: 10.1037/0096-1523.20.5.1000 First citation in articleCrossrefGoogle Scholar

  • Mazza, V., Turatto, M. & Caramazza, A. (2009). Attention selection, distractor suppression and N2pc. Cortex, 45, 879–890. doi: 10.1016/j.cortex.2008.10.009 First citation in articleCrossrefGoogle Scholar

  • Miller, J., Patterson, T. & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35, 99–115. doi: 10.1111/1469-8986.3510099 First citation in articleCrossrefGoogle Scholar

  • Müller, H. J. & Rabbitt, P. M. (1989). Reflexive and voluntary orienting of visual attention: Time course of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception and Performance, 15, 315–330. doi: 10.1037/0096-1523.15.2.315 First citation in articleCrossrefGoogle Scholar

  • O’Regan, J. K., Deubel, H., Clark, J. J. & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition, 7, 191–211. doi: 10.1080/135062800394766 First citation in articleCrossrefGoogle Scholar

  • O’Regan, J. K., Rensink, R. A. & Clark, J. J. (1999). Change blindness as a result of mudsplashes. Nature, 398, 34. doi: 10.1038/17953 First citation in articleCrossrefGoogle Scholar

  • Phillips, W. A. & Singer, W. (1974). Function and interaction of on and off transients in vision I. Psychophysics. Experimental Brain Research, 19, 493–506. doi: 10.1007/BF00236113 First citation in articleCrossrefGoogle Scholar

  • Rensink, R. A., O’Regan, J. K. & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373. doi: 10.1111/j.1467-9280.1997.tb00427.x First citation in articleCrossrefGoogle Scholar

  • Rensink, R. A., O’Regan, J. K. & Clark, J. J. (2000). On the failure to detect changes in scenes across brief interruptions. Visual Cognition, 7, 127–145. doi: 10.1080/135062800394720 First citation in articleCrossrefGoogle Scholar

  • Schankin, A., Hagemann, D. & Wascher, E. (2009). The N2pc as an electrophysiological correlate of attention in change blindness. Journal of Psychophysiology, 23, 43–51. doi: 10.1027/0269-8803.23.2.43 First citation in articleLinkGoogle Scholar

  • Schankin, A. & Wascher, E. (2007). Electrophysiological correlates of stimulus processing in change blindness. Experimental Brain Research, 183, 95–105. doi: 10.1007/s00221-007-1023-z First citation in articleCrossrefGoogle Scholar

  • Schankin, A. & Wascher, E. (2008). Unvoluntary attentional capture in change blindness. Psychophysiology, 45, 742–750. doi: 10.1111/j.1469-8986.2008.00685.x First citation in articleCrossrefGoogle Scholar

  • Simons, D. J. (2000). Current approaches to change blindness. Visual Cognition, 7, 1–15. doi: 10.1080/135062800394658 First citation in articleCrossrefGoogle Scholar

  • Simons, D. J. & Levin, D. T. (1997). Change Blindness. Trends in Cognitive Sciences, 1, 261–267. First citation in articleCrossrefGoogle Scholar

  • Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception and Performance, 20, 799–806. doi: 10.1037/0096-1523.20.4.799 First citation in articleCrossrefGoogle Scholar

  • Treisman, A. M. & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–126. First citation in articleCrossrefGoogle Scholar

  • Ulrich, R. & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38, 816–827. doi: 10.1111/1469-8986.3850816 First citation in articleCrossrefGoogle Scholar

  • Werner, S. & Thies, B. (2000). Is “change blindness” attenuated by domain-specific expertise? An expert-novices comparison of change detection in football images. Visual Cognition, 7, 163–173. doi: 10.1080/135062800394748 First citation in articleCrossrefGoogle Scholar

  • Wolfe, J. M. (2007). Guided search 4.0: Current progress with a model of visual search. In W. GrayEd., Integrated models of cognitive systems (pp. 99–119). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Woodward, T. S., Meier, B., Tipper, C. & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50, 233–238. doi: 10.1026/1618-3169.50.4.233 First citation in articleLinkGoogle Scholar

  • Zhao, G., Liu, Q., Zhang, Y., Jiao, J., Zhang, Q., Sun, H. & Li, H. (2011). The amplitude of N2pc reflects the physical disparity between target item and distracters. Neuroscience Letters, 491, 68–72. doi: 10.1016/j.neulet.2010.12.066 First citation in articleCrossrefGoogle Scholar