Skip to main content
Contributions

Noninvasive Psychophysiological Ambulatory Recordings

Study Design and Data Analysis Strategies

Published Online:https://doi.org/10.1027/1016-9040.14.2.132

Rapid technical developments have greatly facilitated noninvasive 24-hour recording of physiological signals at relatively low costs, including blood pressure, activity of the autonomic nervous system, respiratory behavior, and activity of the hypothalamic-pituitary-adrenocortical axis. Ambulatory noninvasive recordings can be used to study the baseline levels of these physiological variables as well as their reactivity to naturalistic stressors. Levels and reactivity can be compared across groups differing in exposure to risk factors (e.g., stress, genotypes) or used to sharpen the clinical profile of individual subjects (e.g., in panic or somatoform disorders). The focus of the current paper is on the importance of a priori choices in study design and data analysis strategies when ambulatory recording specifically targets the reciprocal relationship between physiological and psychological events. These choices are illustrated with ambulatory-assessed indices of the cardiac autonomic nervous system, blood pressure, respiration, and cortisol secretion.

References

  • Adam, E.K. (2006). Transactions among adolescent trait and state emotion and diurnal and momentary cortisol activity in naturalistic settings. Psychoneuroendocrinology, 31, 664–679. First citation in articleCrossrefGoogle Scholar

  • Affleck, G. , Apter, A. , Tennen, H. , Reisine, S. , Barrows, E. , Willard, A. , et al. . (2000). Mood states associated with transitory changes in asthma symptoms and peak expiratory flow. Psychosomatic Medicine, 62, 61–68. First citation in articleCrossrefGoogle Scholar

  • Alpers, G.W. , Abelson, J.L. , Wilhelm, F.H. , & Roth, W.T. (2003). Salivary cortisol response during exposure treatment in driving phobics. Psychosomatic Medicine, 65, 679–687. First citation in articleCrossrefGoogle Scholar

  • Alpers, G.W. , Wilhelm, F.H. , Roth, W.T. (2005). Psychophysiological assessment during exposure in driving phobic patients. Journal of Abnormal Psychology, 114, 126–139. First citation in articleCrossrefGoogle Scholar

  • Anisman, H. , Griffiths, J. , Matheson, K. , Ravindran, A.V. , Merali, Z. (2001). Posttraumatic stress symptoms and salivary cortisol levels. American Journal of Psychiatry, 158, 1509–1511. First citation in articleCrossrefGoogle Scholar

  • Backhaus, J. , Junghanns, K. , Hohagen, F. (2004). Sleep disturbances are correlated with decreased morning awakening salivary cortisol. Psychoneuroendocrinology, 29, 1184–1191. First citation in articleCrossrefGoogle Scholar

  • Bartels, M. , van den Berg, M. , Sluyter, F. , Boomsma, D.I. , de Geus, E.J.C. (2003). Heritability of cortisol levels: Review and simultaneous analysis of twin studies. Psychoneuroendocrinology, 28, 121–137. First citation in articleCrossrefGoogle Scholar

  • Beda, A. , Jandre, F.C. , Phillips, D.I.W. , Giannella-Neto, A. , Simpson, D.M. (2007). Heart-rate and blood-pressure variability during psychophysiological tasks involving speech: Influence of respiration. Psychophysiology, 44, 767–778. First citation in articleCrossrefGoogle Scholar

  • Berntson, G.G. , Cacioppo, J.T. , Quigley, K.S. , & Fabro, V.T. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31, 44–61. First citation in articleCrossrefGoogle Scholar

  • Berntson, G.G. , Thomas Bigger Jr, J. , Eckberg, D.L. , Grossman, P. , Kaufmann, P.G. , Malik, M. , et al. . (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648. First citation in articleCrossrefGoogle Scholar

  • Boiten, F.A. , Frijda, N.H. , Wientjes, C.J.E. (1994). Emotions and respiratory patterns: Review and critical analysis. International Journal of Psychophysiology, 17, 103–128. First citation in articleCrossrefGoogle Scholar

  • Bolger, N. , Davis, A. , & Rafaeli, E. (2003). Diary methods: Capturing life as it is lived. Annual Review of Psychology, 54, 579–616. First citation in articleCrossrefGoogle Scholar

  • Bussmann, J.B.J. , Ebner-Priemer, U.W. , Fahrenberg, J. (2009). Ambulatory behavior monitoring: Progress in measurement of activity, posture, and specific motion patterns in daily life. European Psychologist, 14, 142–152. First citation in articleLinkGoogle Scholar

  • Christov, I.I. (2004). Real-time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering Online, 3:28. (Retrieved from www.biomedical-engineering-online.com/content/3/1/28 on March 20, 2009.) First citation in articleGoogle Scholar

  • Curtis, B.M. , O’Keefe, J.H. (2002). Autonomic tone as a cardiovascular risk factor: The dangers of chronic fight or flight. Mayo Clinic Proceedings, 77, 45–54. First citation in articleCrossrefGoogle Scholar

  • de Geus, E.J.C. , van Doornen, L.J.P. (1996). Ambulatory assessment of parasympathetic/sympathetic balance by impedance cardiography In J. Fahrenberg, M. Myrtek, (Eds.), Ambulatory assessment. Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 141–164). Berlin: Hogrefe & Huber. First citation in articleGoogle Scholar

  • van Doornen, L.J.P. , Knol, D.L. , Willemsen, G. , & de Geus, E.J.C. (1994). The relationship between stress reactivity in the laboratory and in real-life: Is reliability the limiting factor?. Journal of Psychophysiology, 8, 297–304. First citation in articleGoogle Scholar

  • Ebner-Priemer, U.W. , Kubiak, T. (2007). Psychological and psychophysiological ambulatory monitoring: A review of hardware and software solutions. European Journal of Psychological Assessment, 23, 214–226. First citation in articleLinkGoogle Scholar

  • van Eekelen, A.P.J. , Houtveen, J.H. , Kerkhof, G.A. (2004a). Circadian variation in base rate measures of cardiac autonomic activity. European Journal of Applied Physiology, 93, 39–46. First citation in articleCrossrefGoogle Scholar

  • van Eekelen, A.P.J. , Houtveen, J.H. , Kerkhof, G.A. (2004b). Circadian variation in cardiac autonomic activity: Reactivity measurements to different types of stressors. Chronobiology International, 21, 107–129. First citation in articleCrossrefGoogle Scholar

  • van Eekelen, A.P.J. , Kerkhof, G.A. , van Amsterdam, J.G.C. (2003). Circadian variation in cortisol reactivity to an acute stressor. Chronobiology International, 20, 863–878. First citation in articleCrossrefGoogle Scholar

  • Fahrenberg, J. , Foerster, F. , Smeja, M. , Muller, W. (1997). Assessment of posture and motion by multichannel piezoresistive accelerometer recordings. Psychophysiology, 34, 607–612. First citation in articleCrossrefGoogle Scholar

  • Fahrenberg, J. , Myrtek, M. (Eds.). (1996). Ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies. Seattle, WA: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Fahrenberg, J. , Myrtek, M. (Eds.). (2001). Progress in ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies. Seattle, WA: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Goedhart, A.D. , Kupper, N. , Willemsen, G. , Boomsma, D.I. , de Geus, E.J.C. (2006). Temporal stability of ambulatory stroke volume and cardiac output measured by impedance cardiography. Biological Psychology, 72, 110–117. First citation in articleCrossrefGoogle Scholar

  • Goedhart, A.D. , van der Sluis, S. , Houtveen, J.H. , Willemsen, G. , de Geus, E.J.C. (2007). Comparison of time and frequency domain measures of RSA in ambulatory recordings. Psychophysiology, 44, 203–215. First citation in articleCrossrefGoogle Scholar

  • Grossman, P. , Wilhelm, F.H. , Spoerle, M. (2004). Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. American Journal of Physiology – Heart and Circulatory Physiology, 56-2, H287–H724. First citation in articleGoogle Scholar

  • Haynes, S.N. , Yoshioka, D.T. (2007). Clinical assessment applications of ambulatory biosensors. Psychological Assessment, 19, 44–57. First citation in articleCrossrefGoogle Scholar

  • Hennig, J. , Friebe, J. , Ryl, I. , Kramer, B. , Botcher, J. , Netter, P. (2000). Upright posture influences salivary cortisol. Psychoneuroendocrinology, 25, 69–83. First citation in articleCrossrefGoogle Scholar

  • Hornsveld, H.K. , Garssen, B. , Fiedeldij Dop, M.J.C. , van Spiegel, P.I. , de Haes, J.C.J.M. (1996). Double-blind placebo-controlled study of the hyperventilation provocation test and the validity of the hyperventilation syndrome. Lancet, 348, 154–158. First citation in articleCrossrefGoogle Scholar

  • Houtveen, J.H. , van Doornen, L.J.P. (2007). Medically unexplained symptoms and between-group differences in 24-hr ambulatory recording of stress physiology. Biological Psychology, 76, 239–249. First citation in articleCrossrefGoogle Scholar

  • Houtveen, J.H. , Groot, P.F. , de Geus, E.J.C. (2005). Effects of variation in posture and respiration on RSA and pre-ejection period. Psychophysiology, 42, 713–719. First citation in articleCrossrefGoogle Scholar

  • Houtveen, J.H. , Groot, P.F.C. , de Geus, E.J.C. (2006). Validation of the thoracic impedance derived respiratory signal using multilevel analysis. International Journal of Psychophysiology, 59, 97–106. First citation in articleCrossrefGoogle Scholar

  • Houtveen, J.H. , Molenaar, P.C. (2001). Comparison between the Fourier and wavelet methods of spectral analysis applied to stationary and nonstationary heart period data. Psychophysiology, 38, 729–735. First citation in articleCrossrefGoogle Scholar

  • Imholz, B.P.M. , Wieling, W. , van Montfrans, G.A. , Wesseling, K.H. (1998). Fifteen years experience with finger arterial pressure monitoring: Assessment of the technology. Cardiovascular Research, 38, 605–616. First citation in articleCrossrefGoogle Scholar

  • Kamarck, T.W. , Janicki, D.L. , Shiffman, S. , & Raynor, D.A. (2003). Correspondence between laboratory and ambulatory measures of cardiovascular reactivity: A multilevel modeling approach. Psychophysiology, 40, 675–683. First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C. , Hellhammer, D.H. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22, 150–169. First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C. , Hellhammer, D.H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19, 313–333. First citation in articleCrossrefGoogle Scholar

  • Kupper, N. , de Geus, E.J.C. , van den Berg, M. , Kirschbaum, C. , Boomsma, D.I. , Willemsen, G. (2005). Familial influences on basal salivary cortisol in an adult population. Psychoneuroendocrinology, 30, 857–868. First citation in articleCrossrefGoogle Scholar

  • Mallion, J.M. , Baguet, J.P. , Siche, J.P. , Tremel, F. , & De Gaudemaris, R. (1999). Clinical value of ambulatory blood pressure monitoring. Journal of Hypertension, 17, 585–595. First citation in articleCrossrefGoogle Scholar

  • McCraty, R. , Atkinson, M. , Tomasino, D. , & Stuppy, W.P. (2001). Analysis of 24-hour heart rate variability in patients with panic disorder. Biological Psychology, 56, 131–150. First citation in articleCrossrefGoogle Scholar

  • Mehl, M.R. , & Holleran, S.E. (2007). Obtrusiveness of and participants’ compliance with the electronically activated recorder (EAR). European Journal of Psychological Assessment, 23, 248–257. First citation in articleLinkGoogle Scholar

  • Mommersteeg, P.M.C. , Heijnen, C.J. , Verbraak, M.J.P.M. , van Doornen, L.J.P. (2006). Clinical burnout is not reflected in the cortisol awakening response, the day-curve, or the response to a low-dose dexamethasone suppression test. Psychoneuroendocrinology, 31, 216–225. First citation in articleCrossrefGoogle Scholar

  • Mortola, J.P. (2004). Breathing around the clock: An overview of the circadian pattern of respiration. European Journal of Applied Physiology, 91, 119–129. First citation in articleCrossrefGoogle Scholar

  • Mussgay, L. , Niegot, F. , Ruddel, H. (1996). The assessment of blood pressure variability in behavior modification: The identification of relevant situation and mood factors. In J. Fahrenberg, M. Myrtek, (Eds.), Progress in ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 271–292). Seattle, WA: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Myrtek, M. , & Foester, F. (2001). On-line measurement od additional heart rate. Methodology and application. In J. Fahrenberg, M. Myrtek, (Eds.), Progress in ambulatory assessment: Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 399–414). Seattle, WA: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Pickering, T.G. , Devereux, R.B. (1987). Ambulatory monitoring of blood pressure as a predictor of cardiovascular risk. American Heart Journal, 114, 925–928. First citation in articleCrossrefGoogle Scholar

  • Prill, T. , & Fahrenberg, J. (2007). New methods in ambulatory blood pressure monitoring: Interactive monitoring and detection of posture and movement patterns. Behavior Research Methods, 39, 390–398. First citation in articleCrossrefGoogle Scholar

  • Reilly, K.J. , Moore, C.A. (2003). Respiratory sinus arrhythmia during speech production. Journal of Speech, Language, and Hearing Research, 46, 164–177. First citation in articleGoogle Scholar

  • Riese, H. , van Doornen, L.J.P. , Houtman, I.L.D. , de Geus, E.J.C. (2004). Job strain in relation to ambulatory blood pressure, heart rate, and heart rate variability among female nurses. Scandinavian Journal of Work, Environment, and Health, 30, 477. First citation in articleCrossrefGoogle Scholar

  • Ritz, T. , & Steptoe, A. (2000). Emotion and pulmonary function in asthma: Reactivity in the field and relationship with laboratory induction of emotion. Psychosomatic Medicine, 62, 808–815. First citation in articleCrossrefGoogle Scholar

  • Salomon, K. , Matthews, K.A. , Allen, M.T. (2000). Patterns of sympathetic and parasympathetic reactivity in a sample of children and adolescents. Psychophysiology, 37, 842–849. First citation in articleCrossrefGoogle Scholar

  • Sherwood, A. , Allen, M.T. , Obrist, P.A. , & Langer, A.W. (1986). Evaluation of β-adrenergic influences on cardiovascular and metabolic adjustments to physical and psychological stress. Psychophysiology, 23, 89–104. First citation in articleCrossrefGoogle Scholar

  • Smith, G.T. , Fischer, S. , Fister, S.M. (2003). Incremental validity principles in test construction. Psychological Assessment, 15, 467–477. First citation in articleCrossrefGoogle Scholar

  • Stone, A.A. , Schwartz, J.E. , Smyth, J. , Kirschbaum, C. , Cohen, S. , Hellhammer, D.H. , et al. . (2001). Individual differences in the diurnal cycle of salivary free cortisol: A replication of flattened cycles for some individuals. Psychoneuroendocrinology, 26, 295–306. First citation in articleCrossrefGoogle Scholar

  • Thorn, L. , Hucklebridge, F. , Evans, P. , Clow, A. (2006). Suspected nonadherence and weekend versus week day differences in the awakening cortisol response. Psychoneuroendocrinology, 31, 1009–1018. First citation in articleCrossrefGoogle Scholar

  • Tryon, W.W. (2006). Activity measurement. In M. Hersen, (Ed.), Clinician’s handbook of adult behavioral assessment (pp. 85–120). New York: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Verdecchia, P. , Porcellati, C. , Schillaci, G. , Borgioni, C. , Ciucci, A. , Battistelli, M. , et al. . (1994). Ambulatory blood pressure: An independent predictor of prognosis in essential hypertension. Hypertension, 24, 793–801. First citation in articleCrossrefGoogle Scholar

  • Vrijkotte, T.G.M. , van Doornen, L.J.P. , de Geus, E.J.C. (2000). Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension, 35, 880–886. First citation in articleCrossrefGoogle Scholar

  • Vrijkotte, T.G.M. , van Doornen, L.J.P. , de Geus, E.J.C. (2004). Overcommitment to work is associated with changes in cardiac sympathetic regulation. Psychosomatic Medicine, 66, 656–663. First citation in articleCrossrefGoogle Scholar

  • Weber, C.M. , Smith, A. (1990). Autonomic correlates of stuttering and speech assessed in a range of experimental tasks. Journal of Speech and Hearing Research, 33, 690–706. First citation in articleCrossrefGoogle Scholar

  • Weber, E.J.M. , Molenaar, P.C.M. , van der Molen, M.W. (1992). A nonstationarity test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia. Psychophysiology, 29, 55–65. First citation in articleCrossrefGoogle Scholar

  • Wientjes, J.E. (1992). Respiration in psychophysiology: Methods and applications. Biological Psychology, 34, 179–203. First citation in articleCrossrefGoogle Scholar

  • Wilhelm, F.H. , Grossman, P. , Roth, W.T. (2005). Assessment of heart rate variability during alterations in stress: Complex demodulation vs. spectral analysis. Biomedical Sciences Instrumentation, 41, 346–351. First citation in articleGoogle Scholar

  • Wilhelm, F.H. , Handke, E.M. , Roth, W.T. (2003). Detection of speaking with a new respiratory inductive plethysmography system. Biomedical Sciences Instrumentation, 39, 136–141. First citation in articleGoogle Scholar

  • Wilhelm, F.H. , Pfaltz, M.C. , Grossman, P. (2006). Continuous electronic data capture of physiology, behavior and experience in real life: Toward ecological momentary assessment of emotion. Interacting with Computers, 18, 171–186. First citation in articleCrossrefGoogle Scholar

  • Wilhelm, F.H. , Roth, W.T. (1998a). Taking the laboratory to the skies: Ambulatory assessment of self-report, autonomic, and respiratory responses in flying phobia. Psychophysiology, 35, 596–606. First citation in articleCrossrefGoogle Scholar

  • Wilhelm, F.H. , Roth, W.T. (1998b). Using minute ventilation for ambulatory estimation of additional heart rate. Biological Psychology, 49, 137–150. First citation in articleCrossrefGoogle Scholar

  • Wilhelm, F.H. , Roth, W.T. (2001). The somatic symptom paradox in DSM-IV anxiety disorders: Suggestions for a clinical focus in psychophysiology. Biological Psychology, 57, 105–140. First citation in articleCrossrefGoogle Scholar

  • Wilhelm, F.H. , Roth, W.T. , Sackner, M.A. (2003). The LifeShirt: An advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27, 671–691. First citation in articleCrossrefGoogle Scholar

  • Yoshizaki, H. , Yoshida, A. , Hayashi, F. , & Fukuda, Y. (1998). Effect of posture change on control of ventilation. Japanese Journal of Physiology, 48, 267–273. First citation in articleCrossrefGoogle Scholar