Skip to main content
Published Online:https://doi.org/10.1027/1614-0001/a000069

The regulative theory of temperament defines sensory sensitivity as the capacity to react to sensory stimuli of low stimulating value. Some evidence already exists indicating that dopamine has the potential to modulate different aspects of sensory sensitivity. The present study sought to identify the relationships between several polymorphisms in dopamine genes (DRD2, DRD3, DRD4, DAT1, ANKK1, SNAP-25, and COMT) and sensory sensitivity as a temperamental trait. The method used in this study was family-based. The study was run on 149 biological families with one or two children aged 3–12 (M = 6.83; SD = 1.9). Phenotypic data were obtained using the Temperament Inventory for Children. We found a significant association with rs463379, the single nucleotide polymorphism in intron 4 of dopamine transporter gene (DAT1). Furthermore, we found a significant association with haplotypes in DAT1 and SNAP-25 (the synaptosomal associated protein of 25 kDa) genes. The data collected suggest that variability in dopamine genes may have an impact on the development of sensory sensitivity.

References

  • Ciliax, B. , Drash, G. , Staley, J. , Haber, S. , Mobley, C. , Miller, G. , ... Levey, A. (1999). Immunocytochemical localization of the dopamine transporter in human brain. The Journal of Comparative Neurology, 409(1), 38–56. First citation in articleCrossrefGoogle Scholar

  • De Pascalis, V. , Strelau, J., Zawadzki, B. (1999). The effect of temperamental traits on evoked-potentials, heart rate, and reaction time. Personality and Individual Differences, 26, 441–465. First citation in articleCrossrefGoogle Scholar

  • Dragan, W. Ł. , & Oniszczenko, W. (2007). Association between dopamine D4 receptor and transporter gene polymorphisms and personality traits in a Polish female population. Personality and Individual Differences, 43, 531–540. First citation in articleCrossrefGoogle Scholar

  • Eley, T. C. , Rijsdijk, F. (2005). Introductory guide to the statistics of molecular genetics. Journal of Child Psychology and Psychiatry, 46, 1042–1044. First citation in articleCrossrefGoogle Scholar

  • Fajkowska, M. , Krejtz, I. , & Krejtz, K. (2009). Lęk, temperament i przetwarzanie bodźców emocjonalnych w kontekście ruchu gałek ocznych i procesów pamięci [Anxiety, temperament and processing of emotional stimuli in the context of eyeball movement and memory processes]. In M. Fajkowska B. SzymuraEds., Lęk – geneza, mechanizmy, funkcje (pp. 311–342). Warszawa: Wydawnictwo Naukowe Scholar. First citation in articleGoogle Scholar

  • Frassoni, C. , Inverardi, F., Coco, S., Ortino, B. , Grumelli, C., Pozzi, D. , ... Matteoli, M. (2005). Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ. Neuroscience, 131, 813–823. First citation in articleCrossrefGoogle Scholar

  • Friedel, S. S. , Saar, K. K., Sauer, S. S., Dempfle, A. A. , Walitza, S. S., Renner, T. T. , ... Hebebrand, J. J. (2007). Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Molecular Psychiatry, 12, 923–933. First citation in articleCrossrefGoogle Scholar

  • Ghanizadeh, A. , & Aghakhani, K. (2008). Photophobia and methylphenidate. Psychopharmacology Bulletin, 41(1), 171–173. First citation in articleGoogle Scholar

  • Gizer, I. , Ficks, C. , & Waldman, I. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 51–90. First citation in articleCrossrefGoogle Scholar

  • Gosso, M. F. , de Geus, E. J., Polderman, T. J. , Boomsma, D. I., Heutink, P. , Posthuma, D. (2008). Common variants underlying cognitive ability: Further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes, Brain and Behavior, 7, 355–364. First citation in articleCrossrefGoogle Scholar

  • Haldar, T. , Ghosh, S. (2011). Power comparison between population-based case-control studies and family-based transmission-disequilibrium tests: An empirical study. Indian Journal of Human Genetics, 17(Suppl. 1), S27–S31. First citation in articleGoogle Scholar

  • Horikawa, H. , Saisu, H. , Ishizuka, T., Sekine, Y. , Tsugita, A. , Odani, S. , & Abe, T. (1993). A complex of rab3A, SNAP-25, VAMP/synaptobrevin-2 and syntaxins in brain presynaptic terminals. FEBS Letters, 330, 236–240. First citation in articleCrossrefGoogle Scholar

  • Kazantseva, A. , Gaysina, D., Malykh, S. , Khusnutdinova, E. (2011). The role of dopamine transporter (SLC6A3) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms in personality traits. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1033–1040. First citation in articleCrossrefGoogle Scholar

  • Klitz, W. , Stephen, J., Grote, M. , Carrington, M. (1995). Discordant patterns of linkage disequilibrium of the peptide transporter loci within the HLA class II region. American Journal of Human Genetics, 57, 1436–1444. First citation in articleGoogle Scholar

  • Kristensen, A. , Andersen, J. , Jörgensen, T. , Sörensen, L., Eriksen, J., Loland, C. , ... Gether, U. (2011). SLC6 neurotransmitter transporters: Structure, function, and regulation. Pharmacological Reviews, 63, 585–640. First citation in articleCrossrefGoogle Scholar

  • Lander, E. , Schork, N. (1994). Genetic dissection of complex traits. Science (New York), 265(5181), 2037–2048. First citation in articleCrossrefGoogle Scholar

  • Mill, J. J. , Richards, S. S., Knight, J. J., Curran, S. S. , Taylor, E. E., Asherson, P. P. (2004). Haplotype analysis of SNAP-25 suggests a role in the etiology of ADHD. Molecular Psychiatry, 9, 801–810. First citation in articleCrossrefGoogle Scholar

  • Montecucco, C. , Schiavo, G., Pantano, S. (2005). SNARE complexes and neuroexocytosis: How many, how close? Trends in Biochemical Sciences, 30, 367–372. First citation in articleCrossrefGoogle Scholar

  • Neal, J. , Edelmann, R. J., Glachan, M. (2002). Behavioral inhibition and symptoms of anxiety and depression: Is there a specific relationship with social phobia? British Journal of Clinical Psychology, 41, 361–374. First citation in articleCrossrefGoogle Scholar

  • Oniszczenko, W. (2001). The regulative theory of temperament traits: The study of twins during middle childhood. Polish Psychological Bulletin, 32, 143–149. First citation in articleGoogle Scholar

  • Oniszczenko, W. , & Dragan, W. Ł. (2005). Association between the dopamine D4 receptor gene polymorphism and emotional reactivity as a temperamental trait. Twin Research and Human Genetics, 8, 633–637. First citation in articleCrossrefGoogle Scholar

  • Oniszczenko, W. , & Radomska, A. (2002). Temperament Inventory for Children (TIC) based on the regulative theory of temperament. Psychologia-Etologia-Genetyka, 5, 85–98. (in Polish) First citation in articleGoogle Scholar

  • Oniszczenko, W. , Zawadzki, B., Strelau, J. , Riemann, R. , Angleitner, A. , Spinath, F. M. (2003). Genetic and environmental determinants of temperament: A comparative study based on Polish and German samples. European Journal of Personality, 17, 207–220. First citation in articleCrossrefGoogle Scholar

  • Ott, J. (1999). Analysis of Human Genetic Linkage (3rd ed.). Baltimore, MD: Johns Hopkins University Press. First citation in articleGoogle Scholar

  • Pełka-Wysiecka, J., Zietek, J. , Grzywacz, A. , Kucharska-Mazur, J., Bienkowski, P. , Samochowiec, J. (in press). Association of genetic polymorphisms with personality profile in individuals without psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. First citation in articleGoogle Scholar

  • Rabinowitz, D. , & Laird, N. M. (2000). A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Human Heredity, 50, 211–223. First citation in articleCrossrefGoogle Scholar

  • Reuter, M. , Schmitz, A., Corr, P. , Hennig, J. (2006). Molecular genetics support Gray’s personality theory: The interaction of COMT and DRD2 polymorphisms predicts the behavioral approach system. International Journal of Neuropsychopharmacology, 9, 155–166. First citation in articleGoogle Scholar

  • Reynolds, S. , Lane, S. J. (2009). Sensory overresponsivity and anxiety in children with ADHD. American Journal of Occupational Therapy, 63, 433–440. First citation in articleCrossrefGoogle Scholar

  • Romanos, M. , Renner, T. J., Schecklmann, M., Hummel, B., Roos, M., von Mering, C. , ... Gerlach, M. (2008). Improved odor sensitivity in attention-deficit/hyperactivity disorder. Biological Psychiatry, 64, 938–940. First citation in articleCrossrefGoogle Scholar

  • Roussos, P. , Giakoumaki, S. G., Bitsios, P. (2009). Cognitive and emotional processing in high novelty seeking associated with the L-DRD4 genotype. Neuropsychologia, 47, 1654–1659. First citation in articleCrossrefGoogle Scholar

  • Strelau, J. (1998). Temperament: A psychological perspective. New York: Plenum. First citation in articleGoogle Scholar

  • Strelau, J. , Zawadzki, B. , Piotrowska, A. (2001). Temperament and intelligence: A psychometric approach to the links between both phenomena. In J. M. Collis S. MessickEds., Intelligence and personality: Bridging the gap in theory and measurement (pp. 61–78). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Strobel, A. A. , Lesch, K. P., Jatzke, S. S., Paetzold, F. F. , Brocke, B. B. (2003). Further evidence for a modulation of novelty seeking by DRD4 exon III, 5-HTTLPR, and COMT val/met variants. Molecular Psychiatry, 8, 371–372. First citation in articleCrossrefGoogle Scholar

  • Teare, M. , Dunning, A., Durocher, F. , Rennart, G. , & Easton, D. (2002). Sampling distribution of summary linkage disequilibrium measures. Annals of Human Genetics, 66(Pt 3), 223–233. First citation in articleCrossrefGoogle Scholar

  • Terracciano, A. A. , Sanna, S. S., Uda, M. M., Deiana, B. B. , Usala, G. G., Busonero, F. F. , ... Schlessinger, D. D. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647–656. First citation in articleCrossrefGoogle Scholar

  • Thome, J. , Weijers, H., Wiesbeck, G., Sian, J., Nara, K. , Böning, J. , Riederer, P. (1999). Dopamine D3 receptor gene polymorphism and alcohol dependence: Relation to personality rating. Psychiatric Genetics, 9(1), 17–21. First citation in articleCrossrefGoogle Scholar

  • Treister, R. , Pud, D. , Ebstein, R. P., Laiba, E., Raz, Y. , Gershon, E. , ... Eisenberg, E. (2011). Association between polymorphisms in serotonin and dopamine-related genes and endogenous pain modulation. Journal of Pain, 12, 875–883. First citation in articleCrossrefGoogle Scholar

  • Tripp, G. , Wickens, J. R. (2009). Neurobiology of ADHD. Neuropharmacology, 57(7–8), 579–589. First citation in articleCrossrefGoogle Scholar

  • Vandenbergh, D. , Persico, A., Hawkins, A. , Griffin, C. , Li, X. , Jabs, E. , & Uhl, G. (1992). Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics, 14, 1104–1106. First citation in articleCrossrefGoogle Scholar

  • Van Gestel, S. S. , Forsgren, T. T., Claes, S. S., Del-Favero, J. J., van Duijn, C. M. , Sluijs, S. S. , ... Van Broeckhoven, C. C. (2002). Epistatic effect of genes from the dopamine and serotonin systems on the temperament traits of novelty seeking and harm avoidance. Molecular Psychiatry, 7, 448–450. First citation in articleCrossrefGoogle Scholar

  • Zawadzki, B. , Strelau, J. (1997). Formalna Charakterystyka Zachowania – Kwestionariusz Temperamentu (FCZ – KT). Podręcznik [The Formal Characteristics of Behavior – Temperament Inventory (FCB-TI). Manual]. Warszawa: Pracownia Testów Psychologicznych PTP. First citation in articleGoogle Scholar