Skip to main content
Short Research Article

Automatic Retrieval of Newly Instructed Cue-Task Associations Seen in Task-Conflict Effects in the First Trial after Cue-Task Instructions

Published Online:https://doi.org/10.1027/1618-3169/a000349

Abstract. Novel stimulus-response associations are retrieved automatically even without prior practice. Is this true for novel cue-task associations? The experiment involved miniblocks comprising three phases and task switching. In the INSTRUCTION phase, two new stimuli (or familiar cues) were arbitrarily assigned as cues for up-down/right-left tasks performed on placeholder locations. In the UNIVALENT phase, there was no task cue since placeholder’s location afforded one task but the placeholders were the stimuli that we assigned as task cues for the following BIVALENT phase (involving target locations affording both tasks). Thus, participants held the novel cue-task associations in memory while executing the UNIVALENT phase. Results show poorer performance in the first univalent trial when the placeholder was associated with the opposite task (incompatible) than when it was compatible, an effect that was numerically larger with newly instructed cues than with familiar cues. These results indicate automatic retrieval of newly instructed cue-task associations.

References

  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423. doi: 10.1016/S1364-6613(00)01538-2 First citation in articleCrossref MedlineGoogle Scholar

  • Braverman, A., Berger, A. & Meiran, N. (2014). The hierarchy of task decision and response selection: A task-switching event related potentials study. Brain and Cognition, 88, 35–42. doi: 10.1016/j.bandc.2014.04.006 First citation in articleCrossref MedlineGoogle Scholar

  • Braverman, A. & Meiran, N. (2010). Task conflict effect in task switching. Psychological Research, 74, 568–578. doi: 10.1007/s00426-010-0279-2 First citation in articleCrossref MedlineGoogle Scholar

  • Braverman, A. & Meiran, N. (2014). Conflict control in task conflict and response conflict. Psychological Research, 88, 35–42. doi: 10.1007/s00426-014-0565-5 First citation in articleCrossrefGoogle Scholar

  • Cohen-Kdoshay, O. & Meiran, N. (2007). The representation of instructions in working memory leads to autonomous response activation: Evidence from the first trials in the flanker paradigm. The Quarterly Journal of Experimental Psychology, 60, 1140–1154. doi: 10.1080/17470210600896674 First citation in articleCrossrefGoogle Scholar

  • Cohen-Kdoshay, O. & Meiran, N. (2009). The representation of instructions operates like a prepared reflex: Flanker compatibility effects found in first trial following S-R instructions. Experimental Psychology, 56, 128–133. doi: 10.1027/1618-3169.56.2.128 First citation in articleLinkGoogle Scholar

  • De Houwer, J., Beckers, T., Vandorpe, S. & Custers, R. (2005). Further evidence for the role of mode-independent short-term associations in spatial Simon effects. Perception & Psychophysics, 67, 659–666. doi: 10.3758/BF03193522 First citation in articleCrossref MedlineGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. doi: 10.3758/BF03193146 First citation in articleCrossref MedlineGoogle Scholar

  • Jarmasz, J. & Hollands, J. G. (2009). Confidence intervals in repeated measures designs: The number of observations principle. Canadian Journal of Experimental Psychology, 63, 124–138. doi: 10.1037/a0014164 First citation in articleCrossref MedlineGoogle Scholar

  • Liefooghe, B., Wenke, D. & De Houwer, J. (2012). Instruction-based task-rule congruency effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1325–1335. doi: 10.1037/a0028148 First citation in articleCrossref MedlineGoogle Scholar

  • Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95, 492–527. doi: 10.1037/0033-295X.95.4.492 First citation in articleCrossrefGoogle Scholar

  • Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, A. J. & Wagenmakers, E. J. (2015). JASP (Version 0.7) [Computer software]. First citation in articleGoogle Scholar

  • Meiran, N. (2014). The task cuing paradigm: A user’s guide. In J. A. GrangeG. HoughtonEds., Task switching and cognitive control (pp. 45–73). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Meiran, N. & Cohen-Kdoshay, O. (2012). Working memory load but not multitasking eliminates the prepared reflex: Further evidence from the adapted flanker paradigm. Acta Psychologica, 139, 309–313. doi: 10.1016/j.actpsy.2011.12.008 First citation in articleCrossref MedlineGoogle Scholar

  • Meiran, N., Cole, M. W. & Braver, T. S. (2012). When planning results in loss of control: Intention-based reflexivity and working-memory. Frontiers in Human Neuroscience, 6, 104. doi: 10.3389/fnhum.2012.00104 First citation in articleCrossref MedlineGoogle Scholar

  • Meiran, N., Pereg, M., Kessler, Y., Cole, M. W. & Braver, T. S. (2014). Reflexive activation of newly instructed stimulus-response rules: Evidence from lateralized readiness potentials in no-go trials. Cognitive, Affective, & Behavioral Neuroscience, 15, 365–373. doi: 10.3758/s13415-014-0321-8 First citation in articleCrossrefGoogle Scholar

  • Meiran, N., Pereg, M., Kessler, Y., Cole, M. W. & Braver, T. S. (2015). The power of instructions: Proactive configuration of stimulus-response translation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 768–786. doi: 10.1037/xlm0000063 First citation in articleCrossref MedlineGoogle Scholar

  • Oberauer, K. (2009). Design for a working memory. Psychology of Learning and Motivation, 51, 45–100. First citation in articleCrossrefGoogle Scholar

  • Oberauer, K., Souza, A. S., Druey, M. D. & Gade, M. (2013). Analogous mechanisms of selection and updating in declarative and procedural working memory: Experiments and a computational model. Cognitive Psychology, 66, 157–211. doi: 10.1016/j.cogpsych.2012.11.001 First citation in articleCrossref MedlineGoogle Scholar

  • Shahar, N., Teodorescu, A. R., Usher, M., Pereg, M. & Meiran, N. (2014). Selective influence of working memory load on exceptionally slow reaction times. Journal of Experimental Psychology: General, 143, 1837–1860. doi: 10.1037/a0037190 First citation in articleCrossref MedlineGoogle Scholar

  • Vandierendonck, A. (2016). A comparison of methods to combine speed and accuracy measures of performance: A rejoinder on the binning procedure. Behavior Research Methods, Advance online publication. doi: 10.3758/s13428-016-0721-5 First citation in articleCrossrefGoogle Scholar

  • Wenke, D., Gaschler, R. & Nattkemper, D. (2007). Instruction-induced feature binding. Psychological Research, 71, 92–106. doi: 10.1007/s00426-005-0038-y First citation in articleCrossref MedlineGoogle Scholar

  • Wilhelm, O. & Oberauer, K. (2006). Why are reasoning ability and working memory capacity related to mental speed? An investigation of stimulus-response compatibility in choice reaction time tasks. European Journal of Cognitive Psychology, 18, 18–50. doi: 10.1080/09541440500215921 First citation in articleCrossrefGoogle Scholar