Skip to main content
Original Article

Predictive Validity of a Selection Procedure for Air Traffic Controller Trainees

Published Online:https://doi.org/10.1027/2192-0923/a000039

The job of an air traffic controller (ATCO) is very specific and demanding. The assessment of potential suitable candidates requires a customized and efficient selection procedure. The German Aerospace Center DLR conducts a highly selective, multiple-stage selection procedure for ab initio ATCO applicants for the German Air Navigation Service Provider DFS. Successful applicants start their training with a training phase at the DFS Academy and then continue with a unit training phase in live traffic. ATCO validity studies are scarcely reported in the international scientific literature and have mainly been conducted in a military context with only small and male samples. This validation study encompasses the data from 430 DFS ATCO trainees, starting with candidate selection and extending to the completion of their training. Validity analyses involved the prediction of training success and several training performance criteria derived from initial training. The final training success rate of about 79% was highly satisfactory and higher than that of other countries. The findings demonstrated that all stages of the selection procedure showed predictive validity toward training performance. Among the best predictors were scores measuring attention and multitasking ability, and ratings on general motivation from the interview.

References

  • Broach, D., Manning, C. (1998). Issues in the selection of air traffic controllers. In M. W. Smolensky, E. S. Stein, (Eds.), Human factors in air traffic control (pp. 237–271). San Diego, CA: Academic Press. First citation in articleGoogle Scholar

  • Bruder, C., Jörn, L., Eißfeldt, H. (2008). Aviator 2030: When pilots and air traffic controllers discuss their future. In A. Droog, T. D’Oliveira, (Eds.), Proceedings of the 28th EAAP Conference, Valencia, Spain, Vol. 2, (pp. 354–384). Valencia: European Association for Aviation Psychology. First citation in articleGoogle Scholar

  • CAST . 1998. Consequences of future ATM systems for air traffic controller selection and training. (WP1: Current and future ATM systems, work packages report). In EC FPIVDGVII: Air Transport Project (Ed.), AI-97-SC.2029. Brussels: European Commission First citation in articleGoogle Scholar

  • Damitz, M., Eißfeldt, H., Grasshoff, D., Lorenz, B., Pecena, Y., Schwert, T. (2000). Validierung des DLR-Auswahlverfahrens für Nachwuchsfluglotsen der DFS Deutsche Flugsicherung GmbH: Ergebnisse des Projektes Qualitätssicherung [Validation of the DLR Selection Procedure for DFS Air Traffic Controller Trainees. Results of the Project Quality Assurance. DLR FB 2000–45] Hamburg: German Aerospace Center DLR. First citation in articleGoogle Scholar

  • Damitz, M., Manzey, D., Kleinmann, M., Severin, K. (2003). Assessment center for pilot selection: Construct and criterion validity and the impact of assessor type. Applied Psychology, 52(2), 193–212. First citation in articleCrossrefGoogle Scholar

  • Eißfeldt, H. (2004). Cost savings: The use of biodata to improve selection efficiency in Aviation. In K.-M. Goeters, (Ed.), Aviation psychology: Practice and research (pp. 209–217). Aldershot, UK: Ashgate. First citation in articleGoogle Scholar

  • Eißfeldt, H., Grasshoff, D., Hasse, C., Hoermann, H.-J., Schulze Kissing, D., …, Zierke, O. (2009). Aviator 2030: Ability requirements in future ATM Systems. II: Simulations and experiments. DLR Forschungsbericht 2009–28. Köln: German Aerospace Center DLR. First citation in articleGoogle Scholar

  • Eißfeldt, H., Heintz, A. (2002). Ability requirements for DFS controllers: Current and future. In H. Eißfeldt, M. C. Heil, D. Broach, (Eds.), Staffing the ATM system: The selection of air traffic controllers (pp. 13–24). Aldershot, UK: Ashgate. First citation in articleGoogle Scholar

  • Eißfeldt, H., Maschke, P. (1991). Bewährungskontrolle eines psychologischen Auswahlverfahrens für den Flugverkehrskontrolldienst anhand von Kriterien der Berufsausbildung. Hamburg: German Aerospace Center DLR DLR-FB 91-11. First citation in articleGoogle Scholar

  • Eißfeldt, H., Weber, R., Udovic, A., Vogt, J. (2006). Long-term prediction of stress resistance in air traffic controllers. Human Factors and Aviation Safety, 6(4), 323–332. First citation in articleGoogle Scholar

  • Eschen-Léguedé, S., Pecena, Y. (2008). Rater training for an assessment centre in air traffic controller selection: Development and evaluation. Human Factors and Aerospace Safety, 6, 291–304. First citation in articleGoogle Scholar

  • Eurocontrol . 1996 Guidelines for selection procedures and tests for ab initio trainee controllers Brussels EUROCONTROL (EATCHIP. HUM.ET1.ST04.10000-GUI-01, Edition 1.0) . First citation in articleGoogle Scholar

  • Eurocontrol, 1998 Selection tests, interviews and assessment centers for ab initio trainee controllers: Guideline for implementation Brussels EUROCONTROL (EATCHIP. UM.ET1.ST04.10000-GUI-03-01, Edition 1.0) . First citation in articleGoogle Scholar

  • Fleishman, E. A. (1992). Rating scale booklet: F-JAS: Fleishman Job Analysis Survey. Palo Alto, CA: Consulting Psychologists Press. First citation in articleGoogle Scholar

  • Grasshoff, D. 2006 Initial validation of the Strip Display Management Test The 48th conference of the International Military Testing Association (IMTA), Kingston, Canada Retrieved from www.imta.info/PastConferences/Presentations.aspx . First citation in articleGoogle Scholar

  • Heintz, A. (2004). Cost-benefit analysis in the selection of air traffic controllers. Proceedings of the 26th EAAP Conference–Aviation Psychology: Costs and Benefits. Sesimbra: European Association for Aviation Psychology. First citation in articleGoogle Scholar

  • Hörmann, H.-J., & Maschke, P. (1996). On the relation between personality and job performance of airline pilots. International Journal of Aviation Psychology, 6(2), 171–178. First citation in articleCrossrefGoogle Scholar

  • Johnson, J. T., Ree, M. J. (1994). RANGE J: A Pascal program to compute the multivariate correction for range restriction. Educational and Psychological Measurement, 54, 693–695. First citation in articleCrossrefGoogle Scholar

  • Lawley, D. N. (1943). A note on Karl Pearson’s selection formulae. Proceedings of the Royal Society of Edinburgh, 62(Section A, Pt. 1), 28–30. First citation in articleGoogle Scholar

  • Maschke, P., Goeters, K.-M. (2000). Job requirements of airline pilots: Results of a job analysis. In A. R. Lowe, B. J. Hayward, (Eds.), Aviation Resource Management, Vol II (pp. 1–7). Aldershot, UK: Ashgate. First citation in articleGoogle Scholar

  • Pecena, Y. (2003). An assessment-center approach to ATCO selection: An evaluation study. In Proceedings of the Second EUROCONTROL Selection Seminar, November 16–18 (pp. 201–208). Luxembourg: Luxembourg. First citation in articleGoogle Scholar

  • Pecena, Y., Eschen-Léguedé, S. (2006). Assessment-centre for air traffic controller selection: Assessor training (ATR). In Proceedings of the 27th Conference of the European Association for Aviation Psychology (pp. 14–19). Potsdam: European Association for Aviation Psychology. First citation in articleGoogle Scholar

  • Sackett, P. R., Yang, H. (2000). Correction for range restriction: An expanded typology. Journal of Applied Psychology, 85, 112–118. First citation in articleCrossrefGoogle Scholar

  • Wickens, C. D., Mavor, A. S., McGee, J. P. (Eds.). (1997). Flight to the future: Human factors in air traffic control. Washington, DC: National Academy Press. First citation in articleGoogle Scholar