Skip to main content
Übersichtsarbeit

(Psycho-)Stimulanzien in Psychopharmakotherapie und pharmakologischem Neuroenhancement und ihre suchtmedizinischen Implikationen

Published Online:https://doi.org/10.1024/0939-5911/a000484

Zusammenfassung.Zielsetzung: Ziel des Artikels ist es, dem Leser eine Übersicht über die Wirkungen und die Verbreitung von (Psycho-)Stimulanzien zur Verbesserung kognitiver Funktionen bei Gesunden (pharmakologisches kognitives Neuroenhancement [PCE]) unter besonderer Berücksichtigung suchtmedizinischer Aspekte zu geben. Methodik: Systematische Literaturrecherche via PubMed nach Psychostimulanzien („stimulants“), die zur geistigen Leistungssteigerung („cognitive enhancement“) eingesetzt werden, und Literaturrecherche in aktuellen Büchern aus dem Bereich Sucht. Ergebnisse: Nach heutigem Kenntnisstand spielt die Gruppe der (Psycho-)Stimulanzien die zentrale Rolle beim Phänomen des PCE. Hierzu zählen sowohl die frei verkäuflichen Methylxanthine wie Koffein aber auch illegale bzw. verschreibungspflichtige Amphetamine und deren Derivate wie Methylphenidat, die zum PCE missbraucht werden. Gleichermaßen werden die verschreibungspflichtigen Substanzen dieser Gruppe aber auch gemäß ihrer Indikation psychopharmakotherapeutisch angewendet. Dabei liegt das Ziel der Psychopharmakotherapie in der Verbesserung der vorliegenden Symptome und im Bezug zu krankheitsbedingten kognitiven Einbußen in der Wiederherstellung des krankheitsbedingt verloren gegangenen kognitiven Funktionsniveaus mit einem für die jeweilige psychische Erkrankung indizierten Medikament. Ziel des PCE ist hingegen die Verbesserung der kognitiven Leistungsfähigkeit verschiedener kognitiver Domänen wie z. B. Vigilanz, Konzentration und Gedächtnis über ein „normales Maß“ hinaus. Schlussfolgerung: Der Artikel zeigt die Überschneidung der (Psycho-)Stimulanzien zur Pharmakotherapie und zum PCE und verdeutlicht insbesondere das Suchtrisiko bei Kranken und Gesunden.


Stimulants in psychopharmaco-therpay and pharmacological neuroenhancement

Abstract.Aim: This review gives an overview of the effects and prevalence rates of (psycho-)stimulants presumed to increase cognitive functions in healthy subjects, with a special emphasis on the abuse potential. Methods: We performed a systematic search of the literature via pubmed with the keywords “stimulants” and “cognitive enhancement”; we also did an additional literature search in the most recent books in the field of addiction. Results: Regarding the recent phenomenon of pharmacological cognitive (neuro-)enhancement (PCE), the group of putative PCE drugs is dominated by the group of (psycho-)stimulants such as over the counter (OTC) drugs like methylxanthines (e. g., caffeine) and the illicit or prescription drug group of amphetamines and its derivates (e. g., methylphenidate). Prescription stimulants have clear indications for certain disorders such as attention deficit syndrome. In this respect, the goal of psychopharmacotherapy is to reduce the symptoms caused by the psychiatric disorder by restoring the “original” cognitive performance through the use of prescription drugs. The aim of stimulant PCEs, on the other hand, is to increase cognitive performance beyond the original/natural state of a healthy person in various cognitive domains (e. g., vigilance, concentration, memory, etc.). Conclusion: The article shows a significant interference of stimulant use for medical treatment and PCE. Stimulants have a considerable risk of addiction in patients as well as healthy individuals in the absence of any psychiatric disorder.

Literatur

  • Aggarwal, R., Mishra, A., Crochet, P., Sirimanna, P. & Darzi, A. (2011). Effect of caffeine and taurine on simulated laparoscopy performed following sleep deprivation. 98(11),1666–1672. First citation in articleGoogle Scholar

  • Bagot, K. S. & Kaminer, Y. (2014). Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction, 109(4), 547–557. First citation in articleCrossrefGoogle Scholar

  • Bell, S., Partridge, B., Lucke, J. & Hall, W. (2013). Australian university students’ attitudes towards the acceptability and regulation of pharmaceuticals to improve academic performance. Neuroethics, 6, 197–205. First citation in articleCrossrefGoogle Scholar

  • Berman, S., O’Neill, J., Fears, S., Bartzokis, G. & London, E. D. (2008). Abuse of amphetamines and structural abnormalities in the brain. Annals of the New York Academy of Sciences, 1141, 195–220. First citation in articleCrossrefGoogle Scholar

  • Burgard, D. A., Fuller, R., Becker, B., Ferrell, R. & Dinglasan-Panlilio, M. J. (2013). Potential trends in Attention Deficit Hyperactivity Disorder (ADHD) drug use on a college campus: wastewater analysis of amphetamine and ritalinic acid. Science of the Total Environment, 450–451, 242–249. First citation in articleCrossrefGoogle Scholar

  • Clemow, D. B. & Walker, D. J. (2014). The potential for misuse and abuse of medications in ADHD: a review. Postgraduate Medical Journal, 126(5), 64–81. First citation in articleCrossrefGoogle Scholar

  • Daumann, J. & Gouzoulis-Mayfrank, E. (2015). Amphetamine, Ecstasy und Designerdrogen. Stuttgart: Kohlhammer. First citation in articleGoogle Scholar

  • Daumann, J., Koester, P., Becker, B., Wagner, D., Imperati, D. & Gouzoulis-Mayfrank, E. et al. (2011). Medial prefrontal gray matter volume reductions in users of amphetamine-type stimulants revealed by combined tract-based spatial statistics and voxel-based morphometry. Neuroimage, 54(2),794–801. First citation in articleCrossrefGoogle Scholar

  • de Jongh, R., Bolt, I., Schermer, M. & Olivier, B. (2008). Botox for the brain: enhancement of cognition, mood and pro-social behavior and blunting of unwanted memories. Neuroscience & Biobehavioral Reviews, 32(4), 760–776. First citation in articleCrossrefGoogle Scholar

  • Deline, S., Baggio, S., Studer, J., N’Goran, A. A., Dupuis, M. & Henchoz, Y. et al. (2014). Use of neuroenhancement drugs: prevalence, frequency and use expectations in Switzerland. International Journal of Environmental Research and Public Health, 11(3), 3032–3045. First citation in articleCrossrefGoogle Scholar

  • Dietz, P., Striegel, H., Franke, A. G., Lieb, K., Simon, P. & Ulrich, R. (2013). Randomized response estimates for the 12-month prevalence of cognitive-enhancing drug use in university students. Pharmacotherapy, 33(1), 44–50. First citation in articleCrossrefGoogle Scholar

  • EMCDDA. (2015). Europäischer Drogenbericht. Lissabon: Europäische Beobachtungsstelle für Drogen und Drogensucht. First citation in articleGoogle Scholar

  • Ersche, K. D., Clark, L., London, M., Robbins, T. W. & Sahakian, B. J. (2006). Profile of executive and memory function associated with amphetamine and opiate dependence. Neuropsychopharmacology, 31(5), 1036–1047. First citation in articleCrossrefGoogle Scholar

  • Ferre, S., Ciruela, F., Borycz, J., Solinas, M., Quarta, D. & Antoniou, K. et al. (2008). Adenosine A1-A2A receptor heteromers: new targets for caffeine in the brain. Frontiers in Bioscience, 13, 2391–2399. First citation in articleCrossrefGoogle Scholar

  • Fisone, G., Borgkvist, A. & Usiello, A. (2004). Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences, 61(7–8), 857–872. First citation in articleCrossrefGoogle Scholar

  • Fleckenstein, A. E., Volz, T. J., Riddle, E. L., Gibb, J. W. & Hanson, G. R. (2007). New insights into the mechanism of action of amphetamines. Annual Review of Pharmacology and Toxicology, 47, 681–698. First citation in articleCrossrefGoogle Scholar

  • Foerstl, H. (2009). Neuro-Enhancement: Gehirndoping [Neuro-enhancement. Brain doping]. Der Nervenarzt, 80(7), 840–846. First citation in articleGoogle Scholar

  • Forlini, C., Schildmann, J., Roser, P., Beranek, R. & Vollmann, J. (2014). Knowledge, experiences and views of German university students toward neuroenhancement: an empirical-ethical analysis. Neuroethics, 8(2), 1–10. First citation in articleGoogle Scholar

  • Foskett, A., Ali, A. & Gant, N. (2009). Caffeine enhances cognitive function and skill performance during simulated soccer activity. International Journal of Sport Nutrition and Exercise Metabolism, 19(4), 410–423. First citation in articleCrossrefGoogle Scholar

  • Franke, A. G., Bagusat, C., Dietz, P., Hoffmann, I., Simon, P. & Ulrich, R. et al. (2013). Use of illicit and prescription drugs for cognitive or mood enhancement among surgeons. BMC Medicine, 11, . First citation in articleGoogle Scholar

  • Franke, A. G., Bagusat, C., McFarlane, C., Tassone-Steiger, T., Kneist, W. & Lieb, K. (2014). The use of caffeinated substances by surgeons for cognitive enhancement. Annals of Surgery, 261(6), 1091–1095. First citation in articleGoogle Scholar

  • Franke, A. G., Bonertz, C., Christmann, M., Huss, M., Fellgiebel, A. & Hildt, E. et al. (2011). Non-medical use of prescription stimulants and illicit use of stimulants for cognitive enhancement in pupils and students in Germany. Pharmacopsychiatry, 44(2), 60–66. First citation in articleCrossrefGoogle Scholar

  • Franke, A. G., Christmann, M., Bonertz, C., Fellgiebel, A., Huss, M. & Lieb, K. (2011). Use of coffee, caffeinated drinks and caffeine tablets for cognitive enhancement in pupils and students in Germany. Pharmacopsychiatry, 44(7), 331–338. First citation in articleGoogle Scholar

  • Franke, A. G. & Lieb, K. (2009). Missbrauch von Psychopharmaka zum „Cognitive Enhancement“. InFo Neurologie und Psychiatrie, 11(7–8), 42–50. First citation in articleGoogle Scholar

  • Franke, A. G. & Lieb, K. (2010). Phamakologisches Neuroenhancement und Gehirndoping: Chancen und Risiken [Pharmacological neuroenhancement and brain doping: Chances and risks]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 53(8), 853–859. First citation in articleCrossrefGoogle Scholar

  • Franke, A. G., Northoff, R. & Hildt, E. (2015). The Case of Pharmacological Neuroenhancement: Medical, Judicial and Ethical Aspects from a German Perspective. Pharmacopsychiatry, 48(7), 256–264. First citation in articleGoogle Scholar

  • Franke, A. G., Schwarze, C. E., Christmann, M., Bonertz, C., Hildt, E. & Lieb, K. (2012). Charakteristika von Studierenden, die pharmakologisches Neuroenhancement mit Stimulanzien betreiben: Eine Pilotstudie [Characteristics of university students using stimulants for cognitive enhancement: a pilot study]. Psychiatrische Praxis, 39(4), 174–180. First citation in articleGoogle Scholar

  • Franke, A. G. & Soyka, M. (2015). Pharmakologisches Neuroenhancement aus Sicht der Suchtmedizin [Pharmacological cognitive enhancement from a perspective of misuse and addiction]. Fortschritte der Neurologie Psychiatrie, 83(2), 83–90. First citation in articleGoogle Scholar

  • Gahr, M., Freudenmann, R. W., Hiemke, C., Kolle, M. A. & Schonfeldt-Lecuona, C. (2014). Abuse of methylphenidate in Germany: data from spontaneous reports of adverse drug reactions. Psychiatry Research, 215(1), 252–254. First citation in articleCrossrefGoogle Scholar

  • Giles, G. E., Mahoney, C. R., Brunye, T. T., Gardony, A. L., Taylor, H. A. & Kanarek, R. B. (2012). Differential cognitive effects of energy drink ingredients: caffeine, taurine, and glucose. Pharmacology, Biochemistry and Behavior, 102(4), 569–577. First citation in articleCrossrefGoogle Scholar

  • Gouzoulis-Mayfrank, E. & Daumann, J. (2009). Neurotoxicity of drugs of abuse – the case of methylenedioxyamphetamines (MDMA, ecstasy), and amphetamines. Dialogues Clinical Neurosciences, 11(3), 305–317. First citation in articleGoogle Scholar

  • Hadamitzky, M., McCunney, S., Markou, A. & Kuczenski, R. (2012). Development of stereotyped behaviors during prolonged escalation of methamphetamine self-administration in rats. Psychopharmacology (Berl), 223(3), 259–269. First citation in articleCrossrefGoogle Scholar

  • Hall, W. (2004). Feeling „better than well“. EMBO Reports, 5(12), 1105–1109. First citation in articleCrossrefGoogle Scholar

  • Hildt, E. & Franke, A. G. (Eds.). (2013). Cognitive Enhancement An Interdisciplinary Perspective. Heidelberg: Springer. First citation in articleCrossrefGoogle Scholar

  • Hughes, J. R., Oliveto, A. H., Helzer, J. E., Higgins, S. T. & Bickel, W. K. (1992). Should caffeine abuse, dependence, or withdrawal be added to DSM-IV and ICD-10? American Journal of Psychiatry, 149(1), 33–40. First citation in articleGoogle Scholar

  • Humphreys, K. L., Eng, T. & Lee, S. S. (2013). Stimulant medication and substance use outcomes: a meta-analysis. JAMA Psychiatry, 70(7), 740–749. First citation in articleCrossrefGoogle Scholar

  • Ishak, W. W., Ugochukwu, C., Bagot, K., Khalili, D. & Zaky, C. (2012). Energy drinks: psychological effects and impact on well-being and quality of life-a literature review. Innovations in Clinical Neurosciences, 9(1), 25–34. First citation in articleGoogle Scholar

  • Iversen, L. (2009). Speed, Ecstasy, Ritalin. Amphetamine – Theorie und Praxis. Bern: Huber. First citation in articleGoogle Scholar

  • Kaminer, Y. (2010). Problematic use of energy drinks by adolescents. Child and Adolescent Psychiatric Clinics of North America, 19(3), 643–650. First citation in articleCrossrefGoogle Scholar

  • Ker, K., Edwards, P. J., Felix, L. M., Blackhall, K. & Roberts, I. (2010). Caffeine for prevention of injuries and errors in shift workers. Cochrane Database of Systematic Reviews, 5, CD008508. First citation in articleGoogle Scholar

  • Koester, P., Volz, K. G., Tittgemeyer, M., Wagner, D., Becker, B. & Gouzoulis-Mayfrank, E. et al. (2013). Decision-making in polydrug amphetamine-type stimulant users: an fMRI study. Neuropsychopharmacology, 38(8), 1377–1386. First citation in articleCrossrefGoogle Scholar

  • Lin, F. J., Pierce, M. M., Sehgal, A., Wu, T., Skipper, D. C. & Chabba, R. (2010). Effect of taurine and caffeine on sleep-wake activity in Drosophila melanogaster. Journal of Nature and Science of Sleep, 2, 221–231. First citation in articleCrossrefGoogle Scholar

  • Ling, W., Rawson, R., Shoptaw, S. & Ling, W. (2006). Management of methamphetamine abuse and dependence. Current Psychiatry Reports, 8(5), 345–354. First citation in articleCrossrefGoogle Scholar

  • Lingford-Hughes, A. R., Welch, S. & Nutt, D. J. & British Association for Psychopharmacology. (2004). Evidence-based guidelines for the pharmacological management of substance misuse, addiction and comorbidity: recommendations from the British Association for Psychopharmacology. Journal of Psychopharmacology, 18(3), 293–335. First citation in articleCrossrefGoogle Scholar

  • Linssen, A. M., Sambeth, A., Vuurman, E. F. & Riedel, W. J. (2014). Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies. International Journal of Neuropsychopharmacology, 17(6), 961–977. First citation in articleCrossrefGoogle Scholar

  • Maher, B. (2008). Poll results: look who’s doping. Nature, 452(7188), 674–675. First citation in articleCrossrefGoogle Scholar

  • Maier, L. J., Haug, S. & Schaub, M. P. (2016). Prevalence of and motives for pharmacological neuroenhancement in Switzerland-results from a national internet panel. Addiction, 111(2), 280–295. First citation in articleCrossrefGoogle Scholar

  • Maier, L. J., Liechti, M. E., Herzig, F. & Schaub, M. P. (2013). To dope or not to dope: neuroenhancement with prescription drugs and drugs of abuse among Swiss university students. PLoS One, 8(11), e77967. First citation in articleGoogle Scholar

  • McLellan, T. M. & Lieberman, H. R. (2012). Do energy drinks contain active components other than caffeine? Nutrition Reviews, 70(12), 730–744. First citation in articleCrossrefGoogle Scholar

  • Mehlman, M. J. (2004). Cognition-enhancing drugs. Milbank Quarterly, 82(3), 483–506. First citation in articleCrossrefGoogle Scholar

  • Middendorf, E., Poskowsky, J. & Isserstedt, W. (2012). Formen der Stresskompensation und Leistungssteigerung bei Studierenden. HISBUS – Befragung zur Verbreitung und zu Mustern von Hirndoping und Medikamentenmissbrauch. Hannover: HIS Hochschul-Informations-System GmbH. First citation in articleGoogle Scholar

  • Minzenberg, M. J. & Carter, C. S. (2008). Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology, 33(7), 1477–1502. First citation in articleCrossrefGoogle Scholar

  • Nehlig, A., Daval, J. L. & Debry, G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Research. Brain Research Reviews, 17(2), 139–170. First citation in articleCrossrefGoogle Scholar

  • Neumann, S., Franke, A. G. & Soyka, M. (2016). Methamphetaminabhängigkeit in Deutschland. Eine selektive Übersicht über Epidemiologie, Phänomenologie und Therapie. Nervenheilkunde, 35, 728–816. First citation in articleGoogle Scholar

  • Normann, C., Boldt, J., Maio, G. & Berger, M. (2010). Möglichkeiten und Grenzen des pharmakologischen Neuroenhancements [Options, limits and ethics of pharmacological neuroenhancement]. Der Nervenarzt, 81(1), 66–74. First citation in articleCrossrefGoogle Scholar

  • Ott, R. & Biller-Andorno, N. (2014). Neuroenhancement among Swiss students – a comparison of users and non-users. Pharmacopsychiatry, 47(1), 22–28. First citation in articleGoogle Scholar

  • Repantis, D., Schlattmann, P., Laisney, O. & Heuser, I. (2010). Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research, 62(3), 187–206. First citation in articleCrossrefGoogle Scholar

  • Salo, R., Nordahl, T. E., Buonocore, M. H., Natsuaki, Y., Waters, C. & Moore, C. D. et al. (2009). Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects: a diffusion tensor imaging study. Biological Psychiatry, 65(2), 122–128. First citation in articleCrossrefGoogle Scholar

  • Satel, S. (2006). Is caffeine addictive? – a review of the literature. American Journal on Drug Alcohol Abuse, 32(4), 493–502. First citation in articleCrossrefGoogle Scholar

  • Schelle, K. J., Faulmuller, N., Caviola, L. & Hewstone, M. (2014). Attitudes toward pharmacological cognitive enhancement a review. Frontiers in Systems Neuroscience, 8, . First citation in articleGoogle Scholar

  • Seiden, L. S. & Sabol, K. E. (1996). Metamphetamine and methxlendioxymetamphetamine neurotoxicity: possible mechanisms of cell destruction. In M. D. Majewska (Ed.), Neurotoxicity and neuropathology associated with cocaine abuse (NIDA Research Monograph 163, pp. 251–276). Rockville, MD: National Institute on Drug Abuse. First citation in articleGoogle Scholar

  • Shearer, J., Wodak, A., Mattick, R. P., Van Beek, I., Lewis, J. & Hall, W. et al. (2001). Pilot randomized controlled study of dexamphetamine substitution for amphetamine dependence. Addiction, 96(9), 1289–1296. First citation in articleCrossrefGoogle Scholar

  • Shoptaw, S. J., Kao, U., Heinzerling, K. & Ling, W. (2009). Treatment for amphetamine withdrawal. Cochrane Database of Systematic Reviews, 2, CD003021. First citation in articleGoogle Scholar

  • Simon, S. L., Dean, A. C., Cordova, X., Monterosso, J. R. & London, E. D. (2010). Methamphetamine dependence and neuropsychological functioning: evaluating change during early abstinence. Journal of Studies on Alcohol and Drugs, 71(3), 335–344. First citation in articleCrossrefGoogle Scholar

  • Soyka, M. (2009). Neuro-Enhancement aus suchtmedizinischer Sicht [Neuro-enhancement from an addiction specialist’s viewpoint]. Der Nervenarzt, 80(7), 837–839. First citation in articleCrossrefGoogle Scholar

  • Soyka, M. (2010). Drogennotfälle. Diagnostik, klinisches Erscheinungsbild. Stuttgart: Schattauer. First citation in articleGoogle Scholar

  • Soyka, M. (2013). Drogennotfälle. Stuttgart: Schattauer. First citation in articleGoogle Scholar

  • Soyka, M. (2016). Medikamentenabhängigkeit. Stuttgart: Schattauer. First citation in articleGoogle Scholar

  • Srisurapanont, M., Jarusuraisin, N. & Kittirattanapaiboon, P. (2001). Treatment for amphetamine dependence and abuse. Cochrane Database of Systematic Reviews, 5, CD003022. First citation in articleGoogle Scholar

  • Sugden, C., Housden, C. R., Aggarwal, R., Sahakian, B. J. & Darzi, A. (2012). Effect of pharmacological enhancement on the cognitive and clinical psychomotor performance of sleep-deprived doctors: a randomized controlled trial. Annals of Surgery, 255(2), 222–227. First citation in articleCrossrefGoogle Scholar

  • Vocci, F. & Ling, W. (2005). Medications development: successes and challenges. Pharmacology & Therapeutics, 108(1), 94–108. First citation in articleGoogle Scholar

  • Wesensten, N. J. (2014). Legitimacy of concerns about caffeine and energy drink consumption. Nutrition Reviews, 72(Suppl 1), 78–86. First citation in articleCrossrefGoogle Scholar

  • Wesnes, K. A., Barrett, M. L. & Udani, J. K. (2013). An evaluation of the cognitive and mood effects of an energy shot over a 6h period in volunteers: a randomized, double-blind, placebo controlled, cross-over study. Appetite, 67, 105–113. First citation in articleCrossrefGoogle Scholar

  • Wilens, T. E., Adler, L. A., Adams, J., Sgambati, S., Rotrosen, J. & Sawtelle, R. et al. (2008). Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. Journal of the American Academy of Child & Adolescent Psychiatry, 47(1), 21–31. First citation in articleCrossrefGoogle Scholar

  • Wood, S., Sage, J. R., Shuman, T. & Anagnostaras, S. G. (2014). Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacological Reviews, 66(1), 193–221. First citation in articleCrossrefGoogle Scholar