Skip to main content
Originalbeiträge

Funktionelle Hemisphärenasymmetrie der Selbstkontrolle?

Published Online:https://doi.org/10.1024/1016-264X.18.3.183

Zusammenfassung: Durch die Fähigkeit zur Selbstkontrolle gelingt es uns, diejenigen Aktivitäten zu unterdrücken, die einem angestrebten Ziel oder dem aktuellen sozialen Kontext entgegenstehen. Welche neuronalen Prozesse liegen der Selbstkontrolle zugrunde? Ein vertieftes Verständnis der relevanten neuronalen Mechanismen kann insofern von therapeutischer Relevanz sein, als Störungen der Selbstkontrolle ein zentrales Merkmal vieler neurologischer und psychiatrischer Erkrankungen darstellen. Der vorliegende Artikel fasst vorwiegend eigene experimentelle Arbeiten zusammen, deren Resultate die - aufgrund von Beobachtungen an Patienten mit Schädigungen im Frontalhirn formulierte - Annahme einer lateralisierten Organisation der Selbstkontrolle stützen. Basierend auf diesen Berichten formulieren wir die Schlussfolgerung, dass die Fähigkeit zur Selbstkontrolle, die für ein adäquates Entscheidungsverhalten von fundamentaler Bedeutung ist, über rechtsseitige Regelsysteme organisiert ist und durch kortikale Stimulation vorübergehend moduliert werden kann.


Functional Hemispheric Assymetry of Self-Control

Abstract: The conscious control of thought, action, and emotions may be considered as a distinctive feature of human cognition. Moreover, the ability to override immediate urges is not only relevant for adaptive individual decision-making but also contributes to harmonious social interactions. Which neuronal processes form the bases of self-control? The present article summarizes recent studies stressing the fundamental importance of self-control in the process of individual and social decision-making. Our results confirm the asymmetric role of the prefrontal cortex in self-control processes and show that cortical stimulation can modulate this fundamental human capacity.

References

  • Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231–239. First citation in articleCrossrefGoogle Scholar

  • Alonso-Alonso, M., Pascual-Leone, A. (2007). The right brain hypothesis for obesity. Journal of the American Medical Association, 297, 1819–1822. First citation in articleCrossrefGoogle Scholar

  • Antal, A., Nitsche, M.A., Kincses, T.Z., Kruse, W., Hoffmann, K.P., Paulus, W. (2004a). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. European Journal of Neuroscience, 19, 2888–2892. First citation in articleCrossrefGoogle Scholar

  • Antal, A., Nitsche, M.A., Kruse, W., Kincses, T.Z., Hoffmann, K.P., Paulus, W. (2004b). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16, 521–527. First citation in articleCrossrefGoogle Scholar

  • Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115–116. First citation in articleCrossrefGoogle Scholar

  • Aron, A.R., Robbins, T.W., Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177. First citation in articleCrossrefGoogle Scholar

  • Asahi, S., Okamoto, Y., Okada, G., Yamawaki, S., Yokota, N. (2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254, 245–251. First citation in articleCrossrefGoogle Scholar

  • Baumeister, R.F., Heatherton, T.F., Tice, D.M. (1993). When ego threats lead to self-regulation failure: negative consequences of high self-esteem. Journal of Personality and Social Psychology, 64, 141–156. First citation in articleCrossrefGoogle Scholar

  • Beauregard, M., Levesque, J., Bourgouin, P. (2001). Neural correlates of conscious self-regulation of emotion. Journal of Neuroscience, 21, 1–6. First citation in articleGoogle Scholar

  • Blair, R.J., Cipolotti, L. (2000). Impaired social response reversal. A case of “acquired sociopathy”. Brain, 123, 1122–1141. First citation in articleCrossrefGoogle Scholar

  • Camerer, C.F. (2003). Behavioral game theory - Experiments in strategic interaction. Princeton, NJ: Princeton University Press. First citation in articleGoogle Scholar

  • Cameron, L.A. (1999). Raising the stakes in the ultimatum game: Experimental evidence from Indonesia. Economic Inquiry, 37, 47–59. First citation in articleCrossrefGoogle Scholar

  • Chambers, R.A., Taylor, J.R., Potenza, M.N. (2003). Developmental neurocircuity of motivation in adolescence: a critical period of addiction vulnerability. American Journal of Psychiatry, 160, 1041–1052. First citation in articleCrossrefGoogle Scholar

  • Chikazoe, J., Konishi, S., Asari, T., Jimura, K., Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across response modalities. Journal of Cognitive Neuroscience, 19, 69–80. First citation in articleCrossrefGoogle Scholar

  • Clark, L., Manes, F., Antoun, N., Sahakian, B.J., Robbins, T.W. (2003). The contributions of lesion laterality and lesion volume to decision-making impairment following frontal lobe damage. Neuropsychologia, 41, 1474–1483. First citation in articleCrossrefGoogle Scholar

  • Cummings, J.L. (1995). . In J. Grafman, K.J. Holyoak & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (pp. 1-13). New York: New York Academy of Sciences. First citation in articleGoogle Scholar

  • Cummings, J.L. (1997). Neuropsychiatric manifestations of right hemisphere lesions. Brain and Language, 57, 22–37. First citation in articleCrossrefGoogle Scholar

  • Damasio, A.R. (1995). Descartes' error: Emotion, reason and the human brain. New York: Harper Collins. First citation in articleGoogle Scholar

  • Damasio, A.R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London, Series B Biological Sciences, 351, 1413–1420. First citation in articleCrossrefGoogle Scholar

  • Damasio, A.R., Tranel, D., Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioral Brain Research, 41, 81–94. First citation in articleCrossrefGoogle Scholar

  • Decety, J., Jackson, P.L. (2004). The functional architecture of human empathy. Behavioral and Cognitive Neuroscience Reviews, 3, 71–100. First citation in articleCrossrefGoogle Scholar

  • Devine, P.G. (1989). Stereotypes and prejudice: Their automatic and controlled components. Journal of Personality and Social Psychology, 56, 5–18. First citation in articleCrossrefGoogle Scholar

  • Ernst, M., Bolla, K., Mouratidis, M., Contoreggi, C., Matochik, J.A., Kurian, V. (2002). Decision-making in a risk-taking task: A PET study. Neuropsychopharmacology, 26, 682–691. First citation in articleCrossrefGoogle Scholar

  • Ersche, K.D., Roiser, J.P., Clark, L., London, M., Robbins, T.W., Sahakian, B.J. (2005). Punishment induces risky decision-making in methadone-maintained opiate users but not in heroin users or healthy volunteers. Neuropsychopharmacology, 30, 2115–2124. First citation in articleCrossrefGoogle Scholar

  • Fecteau, S., Knoch, D., Fregni, F., Sultani, N., Boggio, P.S., Pascual-Leone, A. (im Druck). Diminishing risk-taking behavior by modulating activity in the prefrontal cortex. A direct current stimulation study. Journal of Neuroscience, . First citation in articleGoogle Scholar

  • Fishbein, D.H., Eldreth, D.L., Hyde, C., Matochik, J.A., London, E.D., Contoreggi, C. (2005). Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers. Brain Research. Cognitive Brain Research, 23, 119–136. First citation in articleCrossrefGoogle Scholar

  • Fregni, F., Boggio, P.S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23–30. First citation in articleCrossrefGoogle Scholar

  • Freitas, A.L., Liberman, N., Higgins, E.T. (2002). Regulatory fit and resisting temptation during goal pursuit. Journal of Experimental and Social Psychology, 38, 291–298. First citation in articleCrossrefGoogle Scholar

  • Gailliot, M.T., J, S.B., Baumeister, R.F. (2006). Self-regulatory processes defence against the threat of death: Effects of self-control depletion and trait self-control on thoughts and fears of dying. Journal of Personality and Social Psychology, 91, 49–62. First citation in articleCrossrefGoogle Scholar

  • Gandiga, P., Hummel, F., Cohen, L. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117, 845–850. First citation in articleCrossrefGoogle Scholar

  • Gogtay, N., Giedd, J.N., Lusk, L., Hayashi, K.M., Greenstein, D., Vaituzis, A.C. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA, 101, 8174–8179. First citation in articleCrossrefGoogle Scholar

  • Goschke, T. (2002). Volition und kognitive Kontrolle. In J. Müsseler & W. Prinz (Eds.), Allgemeine Psychologie (S. 271-335). Heidelberg: Spektrum. First citation in articleGoogle Scholar

  • Güth, W., Schmittberger, R., Schwarze, B. (1982). An experimental analysis of ultimatum bargaining. Journal of Economic Behavior & Organization, 3, 367–388. First citation in articleCrossrefGoogle Scholar

  • Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55, 187–199. First citation in articleCrossrefGoogle Scholar

  • Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H. (2001). In search of homo economicus: Behavioral experiments in 15 small-scale societies. American Economic Review, 91, 73–78. First citation in articleCrossrefGoogle Scholar

  • Jäncke, L. (2005). Die transkranielle Magnetstimulation (TMS). In L. Jäncke (Ed.), Methoden der Bildgebung in der Psychologie und den kognitiven Neurowissenschaften (S. 199-214). Stuttgart: Kohlhammer. First citation in articleGoogle Scholar

  • Kerns, J.G., Cohen, J.D., MacDonald, A.W. III, Cho, R.Y., Stenger, V.A., Carter, C.S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023–1026. First citation in articleCrossrefGoogle Scholar

  • Knoch, D., Fehr, E. (2007). Resisting the power of temptations: The right prefrontal cortex and self-control. Annals of the New York Academy of Sciences, 1104, 123–134. First citation in articleCrossrefGoogle Scholar

  • Knoch, D., Gianotti, L.R., Pascual-Leone, A., Treyer, V., Regard, M., Hohmann, M. (2006a). Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. Journal of Neuroscience, 26, 6469–6472. First citation in articleCrossrefGoogle Scholar

  • Knoch, D., Nitsche, M., Fischbacher, U., Eisenegger, C., Pascual-Leone, A., Fehr, E. (submitted). Studying the neurobiology of social interaction behavior with transcranial direct current stimulation. The example of punishing unfairness. . First citation in articleGoogle Scholar

  • Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., Fehr, E. (2006b). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314, 829–832. First citation in articleCrossrefGoogle Scholar

  • Landis, T., Regard, M., Weniger, D. (1990). The right cerebral hemisphere. Schweizerische Medizinische Wochenschrift, 120, 433–439. First citation in articleGoogle Scholar

  • Levesque, J., Eugene, F., Joanette, Y., Paquette, V., Mensour, B., Beaudoin, G. (2003). Neural circuitry underlying voluntary suppression of sadness. Biological Psychiatry, 53, 502–510. First citation in articleCrossrefGoogle Scholar

  • Liebetanz, D., Nitsche, M.A., Tergau, F., Paulus, W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125, 2238–2247. First citation in articleCrossrefGoogle Scholar

  • Marsh, R., Zhu, H., Schultz, R.T., Quackenbush, G., Royal, J., Skudlarski, P. (2006). A developmental fMRI study of self-regulatory control. Human Brain Mapping, 27, 848–863. First citation in articleCrossrefGoogle Scholar

  • Matsunaga, K., Nitsche, M.A., Tsuji, S., Rothwell, J.C. (2004). Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clinical Neurophysiology, 115, 456–460. First citation in articleCrossrefGoogle Scholar

  • Miller, E.K., Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. First citation in articleCrossrefGoogle Scholar

  • Mischel, W., Ebbesen, E.B., Zeiss, A.R. (1972). Cognitive and attentional mechanisms in delay of gratification. Journal of Personality and Social Psychology, 21, 204–218. First citation in articleCrossrefGoogle Scholar

  • Mischel, W., Shoda, Y., Rodriguez, M.I. (1989). Delay of gratification in children. Science, 244, 933–938. First citation in articleCrossrefGoogle Scholar

  • Muraven, M., Baumeister, R.F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle?. Psychological Bulletin, 126, 247–259. First citation in articleCrossrefGoogle Scholar

  • Mychack, P., Kramer, J.H., Boone, K.B., Miller, B.L. (2001). The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology, 56, S11–15. First citation in articleGoogle Scholar

  • Nitsche, M.A., Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–1901. First citation in articleCrossrefGoogle Scholar

  • Nunez, J.M., Casey, B.J., Egner, T., Hare, T., Hirsch, J. (2005). Intentional false responding shares neural substrates with response conflict and cognitive control. Neuroimage, 25, 267–277. First citation in articleGoogle Scholar

  • Nyffeler, T., Regard, M. (2001). Kleptomania in a patient with right frontolimbic lesion. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14, 73–76. First citation in articleGoogle Scholar

  • Payne, B.K. (2005). Conceptualizing control in social cognition: How executive functioning modulates the expression of automatic stereotyping. Journal of Personality and Social Psychology, 89, 488–503. First citation in articleCrossrefGoogle Scholar

  • Perry, R.J., Rosen, H.R., Kramer, J.H., Beer, J.S., Levenson, R.L., Miller, B.L. (2001). Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia. Neurocase, 7, 145–160. First citation in articleCrossrefGoogle Scholar

  • Phan, K.L., Magalhaes, A., Ziemlewicz, T.J., Fitzgerald, D.A., Green, C., Smith, W. (2005). Neural correlates of telling lies: A functional magnetic resonance imaging study at 4 Tesla. Academic Radiology, 12, 164–172. First citation in articleCrossrefGoogle Scholar

  • Rankin, K.P., Gorno-Tempini, M.L., Allison, S.C., Stanley, C.M., Glenn, S., Weiner, M.W. (2006). Structural anatomy of empathy in neurodegenerative disease. Brain, 129, 2945–2956. First citation in articleCrossrefGoogle Scholar

  • Regard, M., Knoch, D., Gütling, E., Landis, T. (2003b). Brain damage and addictive behavior: A neuropsychological and electroencephalogram investigation with pathologic gamblers. Cognitive and Behavioral Neurology, 16, 47–53. First citation in articleCrossrefGoogle Scholar

  • Regard, M., Landis, T. (1997). “Gourmand syndrome”: Eating passion associated with right anterior lesions. Neurology, 48, 1185–1190. First citation in articleCrossrefGoogle Scholar

  • Richeson, J.A., Baird, A.A., Gordon, H.L., Heatherton, T.F., Wyland, C.L., Trawalter, S. (2003). An fMRI investigation of the impact of interracial contact on executive function. Nature Neuroscience, 6, 1323–1328. First citation in articleCrossrefGoogle Scholar

  • Robertson, E.M., Theoret, H., Pascual-Leone, A. (2003). Studies in cognition: The problems solved and created by transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 15, 948–960. First citation in articleCrossrefGoogle Scholar

  • Rogers, R.D., Owen, A.M., Middleton, H.C., Williams, E.J., Pickard, J.D., Sahakian, B.J. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal of Neuroscience, 19, 9029–9038. First citation in articleCrossrefGoogle Scholar

  • Rorden, C., Karnath, H.O. (2004). Using human brain lesions to infer function: A relic from a past era in the fMRI age?. Nature Reviews Neuroscience, 5, 813–819. First citation in articleCrossrefGoogle Scholar

  • Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E., Cohen, J.D. (2003). The neural basis of economic decision-making in the ultimatum game. Science, 300, 1755–1758. First citation in articleCrossrefGoogle Scholar

  • Shallice, T., Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741. First citation in articleCrossrefGoogle Scholar

  • Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Aharon-Peretz, J. (2003). Characterization of empathy deficits following prefrontal brain damage: The role of the right ventromedial prefrontal cortex. Journal of Cognitive Neuroscience, 15, 324–337. First citation in articleCrossrefGoogle Scholar

  • Shulman, K.I. (1997). Disinhibition syndromes, secondary mania and bipolar disorder in old age. Journal of Affective Disorders, 46, 175–182. First citation in articleCrossrefGoogle Scholar

  • Small, D.M., Zatorre, R.J., Dagher, A., Evans, A.C., Jones-Gotman, M. (2001). Changes in brain activity related to eating chocolate: From pleasure to aversion. Brain, 124, 1720–1733. First citation in articleCrossrefGoogle Scholar

  • Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., Toga, A.W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315. First citation in articleCrossrefGoogle Scholar

  • Spence, S.A., Farrow, T.F., Herford, A.E., Wilkinson, I.D., Zheng, Y., Woodruff, P.W. (2001). Behavioural and functional anatomical correlates of deception in humans. Neuroreport, 12, 2849–2853. First citation in articleCrossrefGoogle Scholar

  • Starkstein, S.E., Mayberg, H.S., Berthier, M.L., Fedoroff, P., Price, T.R., Dannals, R.F. (1990). Mania after brain injury: Neuroradiological and metabolic findings. Annals of Neurology, 27, 652–659. First citation in articleCrossrefGoogle Scholar

  • Starkstein, S.E., Robinson, R.G. (1997). Mechanism of disinhibition after brain lesions. Journal of Nervous and Mental Disease, 185, 108–114. First citation in articleCrossrefGoogle Scholar

  • Stuss, D.T., Benson, D.F. (1986). The frontal lobes. New York: Raven. First citation in articleGoogle Scholar

  • Stuss, D.T., Gallup, G.G. Jr., Alexander, M.P. (2001). The frontal lobes are necessary for “theory of mind”. Brain, 124, 279–286. First citation in articleCrossrefGoogle Scholar

  • Tangney, J.P., Baumeister, R.F., Boone, A.L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271–324. First citation in articleCrossrefGoogle Scholar

  • Tranel, D., Bechara, A., Denburg, N.L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex, 38, 589–612. First citation in articleCrossrefGoogle Scholar

  • Vohs, K.D., Heatherton, T.F. (2000). Self-regulatory failure: A resource-depletion approach. Psychological Science, 11, 249–254. First citation in articleCrossrefGoogle Scholar

  • Welt, L. (1888). Über Charakterveränderungen der Menschen infolge von Läsionen des Stirnhirn. Deutsches Archiv für Klinische Medizin, 42, 339–390. First citation in articleGoogle Scholar