Skip to main content
Original Communication

Array Effects, Spatial Concepts, or Information Processing Speed

What is the Crucial Variable for Place Learning?

Published Online:https://doi.org/10.1024/1421-0185/a000113

A reaction time/accuracy experiment investigated the development of visual memory for object shape and location in 6–7- and 8–9-year-old children and adults (N = 72) in three array types: (1) an empty screen, (2) a frame delineating a region, and (3) a grid with individually delineated places. A maximized learning design was used. Explicit array boundaries in the frame and in the grid facilitated place memory in both children and adults, while place memory in the empty screen was less correct, slower, and did not improve. Children’s visual memory was initially low, but learning during the task resulted in better object than place memory. Like the children at the end of the session, adults showed better object than place memory at the beginning of the task. They subsequently also improved their object memory, but doubled their place memory performance. Children with object-region binding showed better place memory and more systematic learning effects that were specific to arrays. However, neither array boundaries nor spatial binding concepts explained the absence of place learning in children. Instead, children tried to prevent proactive shape interference in the repeated memory sets at the cost of place learning, while adults did not.

References

  • Axia, G., Bremner, J. G., Deluca, P., Andreasen, G. (1998). Children drawing Europe: The effects of nationality, age and teaching. British Journal of Developmental Psychology, 16, 423–437. First citation in articleCrossrefGoogle Scholar

  • Bar, M., Neta, M. (2007). Visual elements of subjective preference modulate amygdala activation. Neuropsychologia, 45, 2191–2200. doi 10.1016/j.neuropsychologia.2007.03.008 First citation in articleCrossrefGoogle Scholar

  • Bauer, P. J. (1997). Development of memory in early childhood. In N. Cowan, C. Hulme (Eds.), The development of memory in childhood (pp. 83–112). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Beringer, J. (1994). Experimental Run Time System, Version 3.0 and Experimental Run Time Coding System, Version 2.20. First citation in articleGoogle Scholar

  • Biederman, I., Yue, X., Davidoff, J. (2009). Representation of shape in individuals from a culture with minimal exposure to regular, simple artifacts. Psychological Science, 20, 1437–1442. First citation in articleCrossrefGoogle Scholar

  • Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., Burgess, N. (2010). Establishing the boundaries: The hippocampal contribution to imagining scenes. The Journal of Neuroscience, 30, 11688–11695. doi 10.1523/jneurosci.0723-10.2010 First citation in articleCrossrefGoogle Scholar

  • Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13, 170–180. doi 10.1111/j.1467-7687.2009.00870.x First citation in articleCrossrefGoogle Scholar

  • Cohen, M., Pinto, Y., Howe, P., Horowitz, T. (2011). The what–where trade-off in multiple-identity tracking. Attention, Perception, and Psychophysics, 73, 1422–1434. doi 10.3758/ s13414-011-0089-7 First citation in articleGoogle Scholar

  • Cowan, N., Chen, Z. (2009). How chunks form in long-term memory and affect short-term memory limits. In A. Thorn, M. Page (Eds.), Interactions between short-term and long-term memory in the verbal domain (pp. 86–101). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Crone, E. A., Jennigs, J. R., Van der Molen, M. W. (2004). Developmental change in feedback processing as reflected by phasic heart rate changes. Developmental Psychology, 40, 1228–1238. doi 10.1037/0012-1649.40.6.1228 First citation in articleCrossrefGoogle Scholar

  • D’Esposito, M., Postle, B. R., Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fmri studies. Experimental Brain Research, 133, 3–11. doi 10.1007/s002210000395 First citation in articleCrossrefGoogle Scholar

  • De Ribaupierre, A., Bailleux, C. (2000). The development of working memory: Further note on the comparability of two models of working memory. Journal of Experimental Child Psychology, 77, 110–127. First citation in articleCrossrefGoogle Scholar

  • Doeller, C. F., Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences, 105, 5909–5914. doi 10.1073/pnas.0711433105 First citation in articleGoogle Scholar

  • Doeller, C. F., King, J. A., Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105, 5915–5920. doi 10.1073/pnas.0801489105 First citation in articleGoogle Scholar

  • Druker, M., Anderson, B. (2010). Spatial probability aids visual stimulus discrimination. Frontiers in Human Neuroscience, 4, 1–10. First citation in articleGoogle Scholar

  • Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56, 51–65. First citation in articleCrossrefGoogle Scholar

  • Hayes, B. K., Conway, R. N. (2000). Concept acquisition in children with mild intellectual disability: Factors affecting the abstraction of prototypical information. Journal of Intellectual and Developmental Disability, 25, 217–234. First citation in articleCrossrefGoogle Scholar

  • Hayes, B. K., Hennessy, R. (1996). The nature and development of nonverbal implicit memory. Journal of Experimental Child Psychology, 63, 22–43. First citation in articleCrossrefGoogle Scholar

  • Hayes, B. K., Taplin, J. E. (1993). Development of conceptual knowledge in children with mental retardation. American Journal on Mental Retardation, 98, 293–303. First citation in articleGoogle Scholar

  • Hollingworth, A. (2006). Visual memory for natural scenes: Evidence from change detection and visual search. Visual Cognition, 14, 781–807. doi 10.1080/13506280500193818 First citation in articleCrossrefGoogle Scholar

  • Hollingworth, A., Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28, 113–136. doi 10.1037/0096-1523.28.1.113 First citation in articleCrossrefGoogle Scholar

  • Humphreys, G. W. (1999). Neural representation of objects in space. In G. W. Humphreys, J. Duncan, A. Treisman (Eds.), Attention, space and action: Studies in cognitive neuroscience (pp. 165–182). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Hund, A. M., Plumert, J. M. (2002). Delay-induced bias in children’s memory for location. Child Development, 73, 829–840. First citation in articleCrossrefGoogle Scholar

  • Hund, A. M., Plumert, J. M., Benney, C. J. (2002). Children’s ability to form spatial groups: The role of spatial and temporal contiguity. Journal of Experimental Child Psychology, 82, 200–225. First citation in articleCrossrefGoogle Scholar

  • Jaensch, E. R. (1911). Über die Wahrnehmung des Raumes: Eine experimentell-psychologische Untersuchung nebst Anwendung auf Ästhetik und Erkenntnislehre [On the perception of space: An experimental psychological study including applications to esthetics and epistemology]. Leipzig, Germany: Barth. First citation in articleGoogle Scholar

  • Kail, R. (1985). Development of mental rotation: A speed-accuracy study. Journal of Experimental Child Psychology, 40, 181–192. First citation in articleCrossrefGoogle Scholar

  • Kail, R. (1986). The impact of extended practice on rate of mental rotation. Journal of Experimental Child Psychology, 42, 378–391. First citation in articleCrossrefGoogle Scholar

  • Kail, R. (1995). Processing speed, memory, and cognition. In F. E. Weinert (Ed.), Memory performance and competencies: Issues in growth and development (pp. 71–88). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Kail, R. (1996). Nature and consequences of developmental change in speed of processing. Swiss Journal of Psychology, 55, 133–138. First citation in articleGoogle Scholar

  • Kail, R. (1997). Processing time, imagery, and spatial memory. Journal of Experimental Child Psychology, 64, 67–78. First citation in articleCrossrefGoogle Scholar

  • Kail, R. (2000). Speed of information processing: Developmental change and links to intelligence. Journal of School Psychology, 38, 51–61. First citation in articleCrossrefGoogle Scholar

  • Kail, R. (2002). Developmental change in proactive interference. Child Development, 73, 1703–1714. First citation in articleCrossrefGoogle Scholar

  • Kail, R., Park, Y. S. (1990). Impact of practice on speed of mental rotation. Journal of Experimental Child Psychology, 49, 227–244. First citation in articleCrossrefGoogle Scholar

  • Karmiloff-Smith, A. (1995). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT. First citation in articleGoogle Scholar

  • Kosslyn, S. M. (1996). Image and brain: The resolution of the imagery debate. Cambridge, MA: The MIT. First citation in articleGoogle Scholar

  • Kosslyn, S. M., Flynn, R. A., Amsterdam, J. B., Wang, G. (1990). Components of high-level vision: A cognitive neuroscience analysis and accounts of neurological syndromes. Cognition, 34, 203–277. First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (1997). Development of size modification of human figure drawings in spatial axes systems of varying complexity. Journal of Experimental Child Psychology, 66, 264–278. First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (1998). Pressure, velocity and time in speeded drawing of basic graphic pattern by young children. Perceptual and Motor Skills, 86, 1299–1310. First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (2004). More evidence on size modification in spatial axes systems of varying complexity. Journal of Experimental Child Psychology, 88, 171–192. First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (2006). Drawing boundaries: From individual to common region. The development of spatial region attribution in children. British Journal of Developmental Psychology, 24, 419–427. First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (2008a). Figures in and out of context: Absent, simple, complex and halved spatial fields. In C. Lange-Küttner, A. Vinter (Eds.), Drawing and the non-verbal mind: A life-span perspective (pp. 199–220). Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (2008b). Size and contour as crucial parameters in children drawing images. In C. Milbrath, H. M. Trautner (Eds.), Children’s understanding and production of pictures, drawings, and art: Theoretical and empirical approaches (pp. 89–106). Göttingen: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Lange-Küttner, C. (2008c). When one is really two: Switching from object to place memory in the A-Not-B search task. European Journal of Developmental Science, 4, 370–386. First citation in articleGoogle Scholar

  • Lange-Küttner, C. (2009). Habitual size and projective size: The logic of spatial systems in children’s drawings. Developmental Psychology, 45, 913–927. doi 10.1037/a0016133 First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C. (2010a). Gender-specific developmental pathways for boys and girls: The Wertheimer Common-Region-Test can predict spatial memory. European Journal of Developmental Science, 4, 46–66. First citation in articleGoogle Scholar

  • Lange-Küttner, C. (2010b). Ready-made and self-made facilitation effects of arrays: Priming and conceptualization in children’s visual memory. Swiss Journal of Psychology, 69, 189–200. First citation in articleLinkGoogle Scholar

  • Lange-Küttner, C. (2012). The importance of reaction times for developmental science: What a difference milliseconds make. International Journal of Developmental Science, 6, 51–55. doi 10.3233/DEV-2012–11089 First citation in articleGoogle Scholar

  • Lange-Küttner, C., Averbeck, B. B., Hirsch, S. V., Wießner, I., Lamba, N. (2012). Sequence learning under uncertainty in children: Self-reflection vs. self-assertion. Frontiers in Psychology, 3, 127. doi 10.3389/fpsyg.2012.00127 First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C., Ebersbach, M. (2013). Girls in detail, boys in shape: Gender differences when drawing cubes in depth. British Journal of Psychology, 104, 413–434. doi 10.1111/bjop.12010 First citation in articleCrossrefGoogle Scholar

  • Lange-Küttner, C., Friederici, A. D. (2000). Modularity of object and place memory in children. Brain and Cognition, 43, 302–305. First citation in articleGoogle Scholar

  • Lange-Küttner, C., Reith, E. (1995). The transformation of figurative thought: Implications of Piaget and Inhelder’s developmental theory for children’s drawings. In C. Lange-Küttner, G. V. Thomas (Eds.), Drawing and looking (pp. 75–92). Hemel Hampstead, UK: Harvester. First citation in articleGoogle Scholar

  • Lee, S. A., Spelke, E. S. (2011). Young children reorient by computing layout geometry, not by matching images of the environment. Psychonomic Bulletin and Review, 18, 192–198. doi 10.3758/s13423-010-0035-z First citation in articleCrossrefGoogle Scholar

  • Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S., Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845. First citation in articleCrossrefGoogle Scholar

  • Lew, A. (2011). Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychological Bulletin, 137, 484–507. First citation in articleCrossrefGoogle Scholar

  • Logie, R. (1995). Visuo-spatial working memory. Hove, UK: Erlbaum. First citation in articleGoogle Scholar

  • Logie, R. H. (1997). The inner eye and the inner scribe of visuo-spatial working memory: Evidence from developmental fractionation. European Journal of Cognitive Psychology, 9, 241–257. First citation in articleCrossrefGoogle Scholar

  • Loosli-Usteri, M. (1954). Regarding void shock / A propos du choc au vide. Beiheft zur Schweizerischen Zeitschrift für Psychologie und ihre Anwendungen. Bern, Switzerland: Huber. First citation in articleGoogle Scholar

  • MacMillan, N. A., Creelman, D. C. (2005). Detection theory (2nd ed.). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Mangun, G. R., Fannon, S. P. (2007). Networks for attentional control and selection in spatial vision. In F. W. Mast, L. Jäncke (Eds.), Spatial processing in navigation, imagery and perception (pp. 411–432). New York: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M. W., Thomas, M. S. C., Westermann, G. (2007). Neuroconstructivism: How the brain constructs cognition (Vol. 1). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Mayr, U., Kliegl, R., Krampe, R. T. (1996). Sequential and coordinative processing dynamics in figural transformations across the life span. Cognition, 59, 61–90. First citation in articleCrossrefGoogle Scholar

  • McClelland, J. L., McNaughton, B. L., O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457. First citation in articleCrossrefGoogle Scholar

  • McClelland, J. L., Siegler, R. S. (Eds.). (2001). Mechanisms of cognitive development: Behavioral and neural perspectives. Mahwah, NJ: Erlbaum. First citation in articleCrossrefGoogle Scholar

  • McLeod, P., Plunkett, K., Rolls, E. T. (1998). Introduction to connectionist modeling of cognitive processes. Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Mecklinger, A. (1998). On the modularity of recognition memory for object form and spatial location: A topographic erp analysis. Neuropsychologia, 36, 441–460. First citation in articleCrossrefGoogle Scholar

  • Mecklinger, A., Gruenewald, C., Weiskopf, N., Doeller, C. F. (2004). Motor affordance and its role for visual working memory: Evidence from fMRI studies. Experimental Psychology, 51, 258–269. First citation in articleLinkGoogle Scholar

  • Mecklinger, A., Meinshausen, R.-M. (1998). Recognition memory for object form and object location: An event-related potential study. Memory and Cognition, 26, 1068–1088. First citation in articleCrossrefGoogle Scholar

  • Mecklinger, A., Müller, N. (1996). Dissociations in the processing of “what” and “where” information in working memory: An event-related potential analysis. Journal of Cognitive Neuroscience, 8, 453–473. First citation in articleCrossrefGoogle Scholar

  • Mecklinger, A., Pfeifer, E. (1996). Event-related potentials reveal topographical and temporal distinct neuronal activation patterns for spatial and object working memory. Cognitive Brain Research, 4, 211–224. First citation in articleCrossrefGoogle Scholar

  • Möller, E. F. (1925). The “glassy sensation.” American Journal of Psychology, 36, 249–285. First citation in articleCrossrefGoogle Scholar

  • Murre, J. M. J., Wolters, G., Raffone, A. (2006). Binding in working memory and long-term memory: Toward an integrated model. In H. D. Zimmer, A. Mecklinger, U. Lindenberger (Eds.), Handbook of binding and memory (pp. 221–250). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • O’Reilly, R. C., Rudy, J. W. (2000). Computational principles of learning in the neocortex and hippocampus. Hippocampus, 10, 389–397. First citation in articleCrossrefGoogle Scholar

  • O’Reilly, R. C., Rudy, J. W. (2001). Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological Review, 108, 311–345. First citation in articleCrossrefGoogle Scholar

  • Olson, D. R. (1970). Cognitive development: The child’s acquisition of diagonality. Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Orlian, E. K., Rose, S. A. (1997). Speed vs. thoroughness in infant visual information processing. Infant Behavior & Development, 20, 371–381. doi 10.1016/s0163-6383(97)90008-4 First citation in articleCrossrefGoogle Scholar

  • Owen, A. M., Stern, C. E., Look, R. B., Tracey, I., Rosen, B. R., Petrides, M. (1998). Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proceedings of the National Academy of Sciences, 95, 7721–7726. First citation in articleGoogle Scholar

  • Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24, 436–447. First citation in articleCrossrefGoogle Scholar

  • Paule, M. G., Green, L., Myerson, J., Alvarado, M., Bachevalier, J., Schneider, J. S., Schantz, S. L. (2012). Behavioral toxicology of cognition: Extrapolation from experimental animal models to humans: Behavioral toxicology symposium overview. Neurotoxicology and Teratology, 34, 263–273. doi 10.1016/j.ntt.2012.01.008 First citation in articleCrossrefGoogle Scholar

  • Piaget, J. (1969). The mechanisms of perception. London, UK: Routledge & Kegan Paul. First citation in articleGoogle Scholar

  • Piaget, J., Inhelder, B. (1956). The child’s conception of space. London, UK: Routledge & Kegan Paul. First citation in articleGoogle Scholar

  • Piaget, J., Inhelder, B., Szeminska, A. (1960). The child’s conception of geometry. London, UK: Routledge & Kegan Paul. First citation in articleGoogle Scholar

  • Pickering, S. J. (2001). The development of visuo-spatial memory. Memory, 9, 423–432. First citation in articleCrossrefGoogle Scholar

  • Pickering, S. J., Gathercole, S. E., Hall, M., Lloyd, S. A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. The Quarterly Journal of Experimental Psychology, 54, 397–420. First citation in articleCrossrefGoogle Scholar

  • Postle, B., Berger, J., Goldstein, J., Curtis, C., D’Esposito, M. (2001). Behavioral and neurophysiological correlates of episodic coding, proactive interference, and list length effects in a running span verbal working memory task. Cognitive, Affective, & Behavioral Neuroscience, 1, 10–21. doi 10.3758/cabn.1.1.10 First citation in articleCrossrefGoogle Scholar

  • Postle, B. R., D’Esposito, M. (1999). “What”-then-“where” in visual working memory: An event-related fMRI study. Journal of Cognitive Neuroscience, 11, 585–597. First citation in articleCrossrefGoogle Scholar

  • Postma, A., Kessels, R. P. C., Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143–160). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Presson, C. C. (1987). The development of landmarks in spatial memory: The role of differential experience. Journal of Experimental Child Psychology, 44, 317–334. First citation in articleCrossrefGoogle Scholar

  • Schneider, W., Gruber, H., Gold, A., Opwis, K. (1993). Chess expertise and memory for chess positions in children and adults. Journal of Experimental Child Psychology, 56, 328–349. First citation in articleCrossrefGoogle Scholar

  • Schumann-Hengsteler, R., Strobl, M., Zoelch, C. (2004). Temporal memory for locations: On the coding of spatiotemporal information in children and adults. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 101–124). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Schumann, F. (1920). Untersuchungen über die psychologischen Grundprobleme der Tiefenwahrnehmung. 1. Die Repräsentation des leeren Raumes im Bewusstsein. Eine neue Empfindung [Investigation of basic psychological problems in depth perception. 1. The representation of empty space in consciousness. A new sense]. Zeitschrift für Psychologie, 85, 224–244. First citation in articleGoogle Scholar

  • Shalev, L., Tsal, Y. (2003). The wide attentional window: A major deficit of children with attention difficulties. Journal of Learning Disabilities, 36, 517–527. doi 10.1177/00222194030360060301 First citation in articleCrossrefGoogle Scholar

  • Shaw, M. L. (1984). Division of attention among spatial locations: A fundamental difference between detection of letters and detection of luminance decrements. In H. Bouma, D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 109–121). London, UK: Erlbaum. First citation in articleGoogle Scholar

  • Siegler, R. S. (2000). The rebirth of children’s learning. Child Development, 71, 26–35. First citation in articleCrossrefGoogle Scholar

  • Siegler, R. S. (2004). Turning memory development inside out. Developmental Review, 24, 469–475. First citation in articleCrossrefGoogle Scholar

  • Simpson, A., Riggs, K. J. (2006). Conditions under which children experience inhibitory difficulty with a “button-press” go/no-go task. Journal of Experimental Child Psychology, 94, 18–26. First citation in articleCrossrefGoogle Scholar

  • Smith, B. L. (1997). White bird: Flight from the terror of empty space. In M. W. Acklin, J. R. Meloy (Eds.), Contemporary Rorschach interpretation (pp. 191–215). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Smith, E. E., Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. First citation in articleCrossrefGoogle Scholar

  • Sokhadze, E., Baruth, J., El-Baz, A., Horrell, T., Sokhadze, G., Carroll, T., ... Casanova, M. F. (2010). Impaired error monitoring and correction function in autism. Journal of Neurotherapy, 14, 79–95. doi 10.1080/10874201003771561 First citation in articleCrossrefGoogle Scholar

  • Treisman, A. (1993). The perception of features and objects. In A. L. W. Baddeley (Ed.), Attention: Selection, awareness and control (pp. 5–35). Oxford, UK: Clarendon. First citation in articleGoogle Scholar

  • Treisman, A. (2006). Object tokens, binding and visual memory. In H. D. Zimmer, A. Mecklinger, U. Lindenberger (Eds.), Handbook of binding and memory (pp. 315–338). Oxford, UK: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Uttal, D. H., Chiong, C. (2004). Seeing space in more than one way: Children’s use of higher order patterns in spatial memory and cognition. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 125–142). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402. doi 10.1037/a0028446 First citation in articleCrossrefGoogle Scholar

  • Vlamings, P. H. J. M., Jonkman, L. M., Hoeksma, M. R., van Engeland, H., Kemner, C. (2008). Reduced error monitoring in children with autism spectrum disorder: An ERP study. European Journal of Neuroscience, 28, 399–406. doi 10.1111/j.1460-9568.2008.06336.x First citation in articleCrossrefGoogle Scholar

  • Wilson, F. A. W., Scalaidhe, S. P. O., Goldman-Rakic, P. S. (1993). Dissociations of object and spatial processing domains in primate prefrontal cortex. Science, 260, 1955–1957. First citation in articleCrossrefGoogle Scholar

  • Yonelinas, A. P., Hopfinger, J. B., Buonocore, M. H., Kroll, N. E. A., Baynes, K. (2001). Hippocampal, parahippocampal and occipital-temporal contributions to associative and item recognition memory: An fMRI study. Neuroreport, 2, 359–363. First citation in articleCrossrefGoogle Scholar

  • Zimmer, H. D., Mecklinger, A., Lindenberger, U. (Eds.). (2006). Handbook of binding and memory. Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar