Skip to main content
Original Communication

The Change-Deafness Phenomenon in Harmonic Chords

Published Online:https://doi.org/10.1024/1421-0185/a000136

Previous research has demonstrated surprisingly poor performance in participants who are asked to detect changes in briefly disrupted auditory scenes. So far, this change-deafness phenomenon has been found in naturalistic sound scenes and random pure-tone stacks. We now present evidence for this effect in harmonic chords, that is, in a different, yet fundamental aspect of human auditory experience. We investigated the influence of the type of disruption and its duration on change detection. Change deafness was observed regardless of whether white noise or silence had disrupted the chords and was stronger for deleted than for added tones. Crucially, the change-deafness effect was only observed for gaps exceeding 60 ms, and increased with gap durations up to 2000 ms. The present data, in line with previous studies using different stimuli, support the view that the effect is due to a masking of the change-related transient and to the decay of a time-dependent process. For the stimuli at hand, the decay of neural-adaptation-based auditory enhancement is suggested.

References

  • Bidelman, G. M., Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. Journal of Neuroscience, 29, 13165–13171. doi 10.1523/JNEUROSCI.3900-09.2009 First citation in articleCrossrefGoogle Scholar

  • Cervantes Constantino, F., Pinggera, L., Paranamana, S., Kashino, M., Chait, M. (2012). Detection of appearing and disappearing objects in complex acoustic scenes. PLoS ONE, 7, e46167. doi 10.1371/journal.pone.0046167.g010 First citation in articleGoogle Scholar

  • Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341–370. doi 10.1037//0033-2909.96.2.341 First citation in articleCrossrefGoogle Scholar

  • Darwin, C. J., Turvey, M. T., Crowder, R. G. (1972). An auditory analog of the Sperling partial report procedure: Evidence for brief auditory storage. Cognitive Psychology, 3, 255–267. doi 10.1016/0010-0285(72)90007-2 First citation in articleCrossrefGoogle Scholar

  • Demany, L., Ramos, C. (2005). On the binding of successive sounds: Perceiving shifts in nonperceived pitches. The Journal of the Acoustical Society of America, 117, 833–841. doi 10.1121/ 1.1850209 First citation in articleCrossrefGoogle Scholar

  • Demany, L., Trost, W., Serman, M., Semal, C. (2008). Auditory change detection: Simple sounds are not memorized better than complex sounds. Psychological Science, 19, 85–91. doi 10.1111/j.1467-9280.2008.02050.x First citation in articleCrossrefGoogle Scholar

  • DeWitt, L. A., Crowder, R. G. (1987). Tonal fusion of consonant musical intervals: The oomph in Stumpf. Perception & Psychophysics, 41, 73–84. doi 10.3758/BF03208216 First citation in articleCrossrefGoogle Scholar

  • Eramudugolla, R., Irvine, D. R. F., McAnally, K. I., Martin, R. L., Mattingley, J. B. (2005). Directed attention eliminates “change deafness” in complex auditory scenes. Current Biology, 15, 1108–1113. doi 10.1016/j.cub.2005.05.051 First citation in articleCrossrefGoogle Scholar

  • Erviti, M., Semal, C., Demany, L. (2011). Enhancing a tone by shifting its frequency or intensity. Journal of the Acoustical Society of America, 129, 3837–3845. doi 10.1121/1.3589257 First citation in articleCrossrefGoogle Scholar

  • Gallace, A., Tan, H. Z., Spence, C. (2006). The failure to detect tactile change: A tactile analog of visual change blindness. Psychonomic Bulletin & Review, 13, 300–303. doi 10.3758/ BF03193847 First citation in articleCrossrefGoogle Scholar

  • Green, D., Swets, J. (1966). Signal detection theory and psychophysics. New York: Wiley. First citation in articleGoogle Scholar

  • Gregg, M. K., Samuel, A. G. (2008). Change deafness and the organizational properties of sounds. Journal of Experimental Psychology: Human Perception and Performance, 34, 974–991. doi 10.1037/0096-1523.34.4.974 First citation in articleCrossrefGoogle Scholar

  • Gregg, M. K., Samuel, A. G. (2009). The importance of semantics in auditory representations. Attention, Perception & Psychophysics, 71, 607–619. doi 10.3758/APP.71.3.607 First citation in articleGoogle Scholar

  • Hartmann, W. M., Goupell, M. J. (2006). Enhancing and unmasking the harmonics of a complex tone. Journal of the Acoustical Society of America, 120, 2142–2157. doi 10.1121/1.2228476 First citation in articleCrossrefGoogle Scholar

  • Huron, D. (1989). Voice denumerability in polyphonic music of homogeneous timbres. Music Perception, 6, 361–382. doi 10.2307/40285438 First citation in articleCrossrefGoogle Scholar

  • Levin, D. T., Simons, D. J., Angelone, B. L., Chabris, C. F. (2002). Memory for centrally attended changing objects in an incidental real-world change detection paradigm. British Journal of Psychology, 93, 289–302. doi 10.1348/000712602760146224 First citation in articleCrossrefGoogle Scholar

  • McDermott, J. H., Oxenham, A. J. (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18, 452–463. doi 10.1016/j.conb.2008.09.005 First citation in articleCrossrefGoogle Scholar

  • Pavani, F., Turatto, M. (2008). Change perception in complex auditory scenes. Perception & Psychophysics, 70, 619–629. doi 10.3758/PP.70.4.619 First citation in articleCrossrefGoogle Scholar

  • Rensink, R. A., O’Regan, J. K., Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368–373. doi 10.1111/j.1467-9280.1997tb00427.x First citation in articleCrossrefGoogle Scholar

  • Simons, D. J., Franconeri, S. L., Reimer, S. L. (2000). Change blindness in the absence of a visual disruption. Perception, 29, 1143–1154. doi 10.1068/p3104 First citation in articleCrossrefGoogle Scholar

  • Summerfield, Q., Sidwell, A., Nelson, T. (1987). Auditory enhancement of changes in spectral amplitude. Journal of the Acoustical Society of America, 81, 700–708. doi 10.1121/ 1.394838 First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M., Saarinen, J., Paavilainen, P., Danilova, N., Näätänen, R. (1994). Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity. Biological Psychology, 38, 157–167. doi 10.1016/ 0301-0511(94)90036-1 First citation in articleCrossrefGoogle Scholar

  • Vachon, F., Tremblay, S. (2006). Delayed masking and the auditory attentional blink: A test for retrieval competition and bottleneck models. Experimental Psychology, 53, 182–190. doi 10.1027/1618-3169.53.3.182 First citation in articleLinkGoogle Scholar

  • Viemeister, N. F. (1980). Adaptation of masking. In G. van den Brink, F. A. Bilsen (Eds.), Psychophysical, physiological, and behavioral studies in hearing: Proceedings of the 5th International Symposium on Hearing, Noordwijkerhout, The Netherlands, April 8–12, 1980 (pp. 190–199). Delft, The Netherlands: Delft University Press. First citation in articleCrossrefGoogle Scholar

  • Viemeister, N. F., Bacon, S. P. (1982). Forward masking by enhanced components in harmonic complexes. Journal of the Acoustical Society of America, 71, 1502–1507. doi 10.1121/ 1.387849 First citation in articleCrossrefGoogle Scholar

  • Vitevitch, M. S. (2003). Change deafness: The inability to detect changes between two voices. Journal of Experimental Psychology: Human Perception and Performance, 29, 333–342. doi 10.1037/0096-1523.29.2.333 First citation in articleCrossrefGoogle Scholar

  • Vitevitch, M. S., Donoso, A. (2011). Processing of indexical information requires time: Evidence from change deafness. The Quarterly Journal of Experimental Psychology, 64, 1484–1493. doi 10.1080/17470218.2011.578749 First citation in articleCrossrefGoogle Scholar

  • Zelinsky, G. J. (2003). Detecting changes between real-world objects using spatiochromatic filters. Psychonomic Bulletin & Review, 10, 533–555. doi 10.3758/BF03196516 First citation in articleCrossrefGoogle Scholar