Skip to main content
Published Online:https://doi.org/10.1026/0012-1924/a000155

Zusammenfassung. In dem vom Bundesinstitut für Sportwissenschaft geförderten Verbundprojekt REGman wird mit der Entwicklung des Akutmaßes zur Erfassung von Erholung und Beanspruchung im Sport (AEB) dem Wunsch der Sportpraxis nach einem kompakten und sensitiven psychometrischen Messinstrument zur Quantifizierung von Erholung und Beanspruchung nachgegangen. Nach einer Expertenbefragung wurde eine erste Fragebogenversion an Sportstudierenden (N = 257) getestet. Basierend auf den Ergebnissen einer exploratorischen Faktoren- und Reliabilitätsanalyse wurde jeweils ein Modell für Erholung und für Beanspruchung mit insgesamt 32 Adjektiven erstellt. Zur Überprüfung dieser Modelle durch eine konfirmatorische Faktorenanalyse wurde die überarbeitete Version zunächst an einer Gruppe leistungsorientierter Sportlerinnen und Sportler (N = 429) getestet, leicht modifiziert und anschließend an einer Gruppe von Leistungssportlerinnen und -sportlern (N = 574) konfirmatorisch validiert. Es zeigten sich gute Fit-Indizes sowie eine sehr gute Skalenhomogenität. Durch hypothesenkonforme Korrelationen mit den konvergenten Verfahren Erholungs-Belastungs-Fragebogen für Sportler (EBF-Sport) und Visuelle Analogskala zum Muskelschmerzempfinden und Muskelkater (DOMS) konnten erste Hinweise zur Konstruktvalidität gewonnen werden.


Development of the Acute Recovery and Stress Scale for Sports

Abstract. The sport-specific Acute Recovery and Stress Scale (ARSS) was developed within the collaborative research project REGman, which is sponsored by the Federal Institute of Sport Science. Following an expert survey, the initial questionnaire consisting of 32 adjectives was completed by sport students (N = 257). Based on the results of an exploratory factor and a reliability analysis, models for recovery and for stress were created, respectively. For verification of these models by confirmatory factor analysis, the revised version was tested on a group of performance-oriented athletes (N = 429). Afterward, the version was slightly modified and validated by a group of high-level athletes (N = 574). The confirmatory factor analysis indicated good-fit indices as well as scale homogeneity. Furthermore, the first indications of construct validity were obtained, as shown by the correlations with the convergent procedures Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) and Delayed-Onset Muscle Soreness (DOMS).

Literatur

  • Beauducel, A. & Wittmann, W. W. (2005). Simulation study on fit indexes in CFA based on data with slightly distorted simple structure. Structural Equation Modeling, 12, 41 – 75. First citation in articleCrossrefGoogle Scholar

  • Beckmann, J. & Kellmann, M. (2008). Sportpsychologische Praxis: Von der Diagnostik zu Training und Intervention. In J. BeckmannM. KellmannHrsg., Enzyklopädie der Psychologie: Anwendungen der Sportpsychologie (S. 1 – 39). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Borg, G. (1998). Borg’s Perceived Exertion and Pain Scale. Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Bortz, J. & Döring, N. (2006). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Heidelberg: Springer. First citation in articleCrossrefGoogle Scholar

  • Brink, M., Visscher, C. & Coutts, A. L. K. (2012). Changes in perceived stress and recovery in overreached young elite soccer players. Scandinavian Journal of Medicine & Science in Sports, 22, 285 – 292. First citation in articleCrossrefGoogle Scholar

  • Browne, M. & Cudeck, R. (1993). Alternative ways of assessing equation. In K. BollenJ. LongEds., Testing structural equation models (pp. 136 – 162). Newbury Park, CA: Sage Publications. First citation in articleGoogle Scholar

  • Bühner, M. (2011). Einführung in die Test- und Fragebogenkonstruktion. München: Pearson Studium. First citation in articleGoogle Scholar

  • Cleather, D. & Guthrie, S. (2007). Quantifying delayed-onset muscle soreness: A comparison of unidimensional and multidimensional instrumentation. Journal of Sports Science, 25, 845 – 850. First citation in articleCrossrefGoogle Scholar

  • Coutts, A. J., Wallace, L. K. & Slattery, K. M. (2007). Monitoring changes in performance, physiology, biochemistry and psychology during overreaching and recovery in triathletes. International Journal of Sports Medicine, 28, 125 – 134. First citation in articleCrossrefGoogle Scholar

  • Dupont, G., Nedelec, M., McCall, A., McCormack, D., Berthoin, S. & Wisloff, U. (2010). Effect of 2 soccer matches in a week on physical performance and injury rate. American Journal of Sports Medicine, 38, 1752 – 1758. First citation in articleCrossrefGoogle Scholar

  • Ekstrand, J., Walden, M. & Hagglund, M. (2004). A congested football calendar and the wellbeing of players: Correlation between match exposure of European footballers before the World Cup 2002 and their injuries and performances during that World Cup. British Journal of Sports Medicine, 38, 493 – 497. First citation in articleCrossrefGoogle Scholar

  • Fürntratt, E. (1969). Zur Bestimmung der Anzahl interpretierbarer gemeinsamer Faktoren psychologischer Daten. Diagnostica, 15, 62 – 75. First citation in articleGoogle Scholar

  • Hilbert, J., Sforzo, G. & Swensen, T. (2003). The effects of massage on delayed onset muscle. British Journal of Sports Medicine, 37, 72 – 75. First citation in articleCrossrefGoogle Scholar

  • Homburg, C. & Giering, A. (1996). Konzeptionalisierung und Operationalisierung komplexer Konstrukte – Ein Leitfaden für die Marketingforschung. Marketing: Zeitschrift für Forschung und Praxis, 18 (1), 5 – 24. First citation in articleGoogle Scholar

  • Hooper, S. & Mackinnon, L. (1995). Monitoring overtraining in athletes. Sports Medicine, 20, 321 – 327. First citation in articleCrossrefGoogle Scholar

  • Hooper, S., Mackinnon, L. & Howard, A. (1999). Physiological and psychometric variables for monitoring recovery during tapering for major competition. Medicine & Science in Sports & Exercise, 31, 1205 – 1210. First citation in articleCrossrefGoogle Scholar

  • Hu, L. & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6 (1), 1 – 55. First citation in articleCrossrefGoogle Scholar

  • Kallus, K. W. & Kellmann, M. (2000). Burnout in athletes and coaches. In Y. Hanin (Ed.), Emotions in sport (pp. 209 – 230). Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Kellmann, M. (2000). Psychologische Methoden der Erholungs-Beanspruchungs-Diagnostik. Deutsche Zeitschrift für Sportmedizin, 51, 253 – 258. First citation in articleGoogle Scholar

  • Kellmann, M. (2002a). Psychological assessment of underrecovery. In M. KellmannEd., Enhancing recovery: preventing underperformance in athletes (pp. 37 – 55). Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Kellmann, M (2002b). Underrecovery and overtraining: Different concepts – Similar impact? In M. Kellmann (Ed.), Enhancing recovery: Preventing underperformance in athletes (pp. 3 – 24). Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Kellmann, M. (2010). Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scandinavian Journal of Medicine & Science in Sports & Exercise, 20, 95 – 102. First citation in articleCrossrefGoogle Scholar

  • Kellmann, M. & Golenia, M. (2003). Skalen zur Erfassung der aktuellen Befindlichkeit im Sport. Zeitschrift für Sportmedizin, 54, 329 – 330. First citation in articleGoogle Scholar

  • Kellmann, M. & Kallus, K. W. (2000). Der Erholungs-Belastungs-Fragebogen für Sportler. Manual. Frankfurt a. M.: Sweets & Zeitlinger. First citation in articleGoogle Scholar

  • Kellmann, M. & Kallus, K. W. (2001). Recovery-Stress Questionnaire for Athletes. Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Kellmann, M. & Kallus, K. W. (2016). The Recovery-Stress Questionnaire for Athletes. In K. W. KallusM. KellmannEds., The Recovery-Stress Questionnaires: User Manual (S. 86 – 131). Frankfurt: Pearson. First citation in articleGoogle Scholar

  • Kenttä, G. & Hassmén, P. (1998). Overtraining and recovery. A conceptual model. Sports Medicine, 26 (1), 1 – 16. First citation in articleCrossrefGoogle Scholar

  • Kleinert, J. (2006). Adjektivliste zur Erfassung der wahrgenommenen körperlichen Verfassung. Zeitschrift für Sportpsychologie, 13, 156 – 164. First citation in articleLinkGoogle Scholar

  • Kölling, S., Hitzschke, B., Holst, T., Ferrauti, A., Meyer, T. & Pfeiffer, M., et al. (2015). Validity of the Acute Recovery and Stress Scale - Training Monitoring of the German Junior National Field Hockey Team. International Journal of Sports Science & Coaching. First citation in articleCrossrefGoogle Scholar

  • Lienert, G. A. & Raatz, U. (1998). Testaufbau und Testanalyse. Weinheim: Beltz, Psychologie-Verlags-Union. First citation in articleGoogle Scholar

  • Lundqvist, C. & Kenttä, G. (2010). Positive emotions are not simply the absence of negative ones: Development and validation of the Emotional Recovery Questionnaire (EmRecQ). The Sport Psychologist, 24, 468 – 488. First citation in articleCrossrefGoogle Scholar

  • Mäetsu, J., Jürimäe, J. & Jürimäe, T. (2005). Monitoring of performance and training in rowing. Sports Medicine, 35, 597 – 617. First citation in articleCrossrefGoogle Scholar

  • Main, L. & Landers, G. (2012). Overtraining or burnout: A training and psycho-behavioural case study. International Journal of Sports Science & Coaching, 7, 127 – 128. First citation in articleCrossrefGoogle Scholar

  • Mayring, P. (2010). Qualitative Inhaltsanalyse. Weinheim: Beltz. First citation in articleCrossrefGoogle Scholar

  • McDonald, R. P. & Ho, M. H. R. (2002). Principal and practice in reporting structural equation analyses. Psychological Methods, 7 (1), 64 – 82. First citation in articleCrossrefGoogle Scholar

  • McNair, D., Lorr, M. & Droppleman, L. F. (1992). Manual for the Profile of Mood States. San Diego, CA: Educational and Industrial Testing Service. First citation in articleGoogle Scholar

  • Meeusen, R., Duclos, M., Foster, C., Fry, A., Glesson, M. & Nieman, D., et al. (2013). Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sport Medicine (ACSM). Medicine & Science in Sports & Exercise, 45, 186 – 205. First citation in articleCrossrefGoogle Scholar

  • Meyer, T. (2010). Regeneration im Leistungssport. Deutsche Zeitschrift für Sportmedizin, 61, 127 – 128. First citation in articleGoogle Scholar

  • Noble, B. & Robertson, R. J. (1996). Perceived exertion. Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • O’Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments & Computers, 32, 396 – 402. First citation in articleCrossrefGoogle Scholar

  • Ohnhaus, E. & Adler, R. (1975). Methodological problems in the measurement of pain: A comparison between the verbal rating scale and the visual analogue scale. Pain, 1, 379 – 384. First citation in articleCrossrefGoogle Scholar

  • Poppendieck, W., Faude, O., Wegmann, M. & Meyer, T. (2013). Cooling and performance recovery of trained athletes – a meta-analytical review. International Journal of Sport Physiology and Performance, 7, 227 – 242. First citation in articleCrossrefGoogle Scholar

  • Raglin, J. (1993). Overtraining and staleness: Psychometric monitoring of endurance athletes. In R. SingerM. MurpheyL. TennantEds., Handbook of research on sport psychology (pp. 840 – 850). New York, NY: Macmillan. First citation in articleGoogle Scholar

  • Rushall, B. S. (1990). A tool measuring stress tolerance in elite athletes. Journal of Applied Sport Psychology, 2 (1), 51 – 66. First citation in articleCrossrefGoogle Scholar

  • Scherr, J., Wolfarth, B., Christle, J. W., Pressler, A., Wagenpfeil, S. & Halle, M. (2013). Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. European Journal of Applied Physiology, 113, 147 – 155. First citation in articleCrossrefGoogle Scholar

  • Sonnentag, S. & Fritz, C. (2007). The recovery experience questionaire: Development and validation of a measure assessing recuperation and unwinding at work. Journal of Occupational Health Psychology, 12, 204 – 221. First citation in articleCrossrefGoogle Scholar

  • Steinacker, J., Lormes, W., Kellmann, M., Liu, Y., Reißnecker, S. & Opitz-Gress, A., et al. (2000). Training of junior rowers before world championships. Effects on performance, mood state and selected hormonal and metabolic responses. Journal of Sports Medicine and Physical Fitness, 40, 327 – 335. First citation in articleGoogle Scholar

  • Ulmer, H., Macsenaere, M. & Valasiadis, A. (1999). Psychologische Erholung nach einem 400-m-Lauf – Vergleich zweier objektiver und zweier subjektiver Tests. Psychologie und Sport, 6, 12 – 17. First citation in articleGoogle Scholar

  • Wegmann, M., Faude, O., Poppendieck, W., Hecksteden, A., Fröhlich, M. & Meyer, T. (2012). Precooling and sports performance: A meta-analytical review. Sports Medicine, 42, 545 – 564. First citation in articleCrossrefGoogle Scholar

  • Weiber, R. & Mühlhaus, D. (2010). Strukturgleichungsmodellierung. Heidelberg: Springer. First citation in articleGoogle Scholar

  • West, S. G., Finch, J. F. & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. HoyleEd., Structural equation modeling: Concepts, issues, and applications (pp. 56 – 75). Thousand Oaks, CA: Sage Publications. First citation in articleGoogle Scholar

  • Williamson, A. & Hoggart, B. (2005). Pain: A review of three commonly used pain rating scales. Journal of Clinical Nursing, 14, 798 – 804. First citation in articleCrossrefGoogle Scholar

  • Zerssen, D. v. & Petermann, F. (2001). Befindlichkeits-Skala. Göttingen: Hogrefe. First citation in articleGoogle Scholar