Skip to main content
Published Online:https://doi.org/10.1026/1612-5010/a000065

Mentales Training (MT) im Sinne der planmäßig wiederholten Vorstellung eines Bewegungsablaufes ist ein zentraler Gegenstand sportpsychologischer Forschung. Im Hochleistungssport und in der Rehabilitation wird es zur Optimierung von Bewegungen eingesetzt. Einen Erklärungsansatz der Trainingswirkung bietet die Simulationstheorie mit dem zentralen Postulat, dass Bewegungsausführung und -vorstellung gleiche neuronale Strukturen aktivieren (funktionale Äquivalenz). Diese Annahme wurde mittels verschiedener neurophysiologischer Methoden geprüft, die teils zu widersprüchlichen Befunden führten. Die Elektroenzephalographie (EEG) kann unserer Ansicht nach dabei helfen, Lücken im theoretischen Erkenntnisprozess zu schließen. In diesem Artikel geben wir einen Überblick über die aktuelle Befundlage zum Mentalen Training mittels EEG. Es sollen drei wesentliche Vorteile der Methode aufgezeigt werden: (a) das EEG liefert Maße der neurophysiologischen Aktivität mit hoher zeitlicher Auflösung, (b) technische Weiterentwicklungen (drahtlose Hardware, tragbare Ausrüstung) erlauben die notwendige Bewegungsfreiheit für eine Anwendung im Sportkontext und (c) in der Rehabilitation kann die Vorstellung von Bewegungen als mentale Strategie dienen, um eine Neuroprothese auf Basis von Hirnsignalen zu steuern.


Findings from EEG studies concerning mental training: An overview

Mental practice – the methodically repeated imagination of a course of movement – is a central topic of research in sports psychology. It is applied both in high-performance sports and in rehabilitation to optimize movements. One explanation of the training effects is offered by simulation theory with its central postulate that motor imagery and movement execution activate similar neuronal structures (functional equivalence). Several neurophysiological methods have been used to prove this assumption, but the results are still inconclusive. In our opinion, electroencephalography (EEG) is conducive to the improvement of the theoretical process of understanding. This review surveys current findings concerning mental practice by means of EEG. We present three main benefits of using EEG: (a) it offers measurements of neuropsychological activity with high time resolution, (b) technical developments (wireless hardware, portable equipment) provide the mobility necessary for its application in the domain of sports, and (c) within rehabilitation, the imagination of movements can serve as a mental strategy to control neural prosthesis through brain activity.

Literatur

  • Beisteiner, R. , Hollinger, P. , Lindinger, G. , Lang, W. , Berthoz, A., (1995). Mental representations of movements – brain potentials associated with imagination of hand movements. Evoked Potentials-Electroencephalography and Clinical Neurophysiology, 96, 183– 193. First citation in articleCrossrefGoogle Scholar

  • Beyer, L. , Weiss, T. , Hansen, E. , Wolf, A. , Seidel, A. (1990). Dynamics of central nervous activation during motor imagination. International Journal of Psychophysiology, 9, 75– 80. First citation in articleCrossrefGoogle Scholar

  • Birbaumer, N. , Schmidt, R. F., (2010). Biologische Psychologie. Berlin: Springer. First citation in articleCrossrefGoogle Scholar

  • Braun, S. M. , Beurskens, A. J. , Van Kroonenburgh, S. M. , Demarteau, J. , Schols, J. M. >& Wade, D. T., (2007). Effects of mental practice embedded in daily therapy compared to therapy as usual in adult stroke patients in Dutch nursing homes: Design of a randomised controlled trial. Bmc Neurology, 7, 34, doi: 10.1186/1471-2377-7-34. First citation in articleGoogle Scholar

  • Caldara, R. , Deiber, M. P. , Andrey, C. , Michel, C. , Thut, G. , Hauert, C. A., (2004). Actual and mental motor preparation and execution: a spatiotemporal ERP study. Experimental Brain Research, 159, 389– 399. First citation in articleCrossrefGoogle Scholar

  • Carrillo-de-la-Pena, M. T. , Lastra-Barreira, C. , Galdo-Alvarez, S. (2006). Limb (hand vs. foot) and response conflict have similar effects on event-related potentials (ERPs) recorded during motor imagery and overt execution. European Journal of Neuroscience, 24, 635– 643. First citation in articleCrossrefGoogle Scholar

  • Cunnington, R. , Iansek, R. , Bradshaw, J. L. , Phillips, J. G. (1996). Movement-related potentials associated with movement preparation and motor imagery. Experimental Brain Research, 111, 429– 436. First citation in articleCrossrefGoogle Scholar

  • Decety, J. , Grezes, J. (1999). Neural mechanisms subserving the perception of human actions. Trends in Cognitive Sciences, 3, 172– 178. First citation in articleCrossrefGoogle Scholar

  • Dechent, P. , Merboldt, K. D. , Frahm, J. (2004). Is the human primary motor cortex involved in motor imagery? Cognitive Brain Research, 20, 533– 533. First citation in articleCrossrefGoogle Scholar

  • Driskell, J. E. , Copper, C. , Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79, 481– 492. First citation in articleCrossrefGoogle Scholar

  • Eberspächer, H. (2007). Mentales Training. Das Handbuch für Trainer und Sportler. München: Copress Sport. First citation in articleGoogle Scholar

  • Erlacher, D. (2010). Mentales Training als Simulation. Zeitschrift für Sportpsychologie, 17, 69– 77. First citation in articleLinkGoogle Scholar

  • Farah, M. J. (1984). The neurological basis of mental imagery: a componential analysis. Cognition, 18, 245– 272. First citation in articleCrossrefGoogle Scholar

  • Feltz, D. L. , Landers, D. M., (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of Sport Psychology, 5, 25– 57. First citation in articleCrossrefGoogle Scholar

  • Feltz, D. L. , Landers, D. M. , Becker, B. J. (1988). A revised meta-analysis of the mental practice literature on motor skill learning. In J. Druckmann & J. Swets (Eds.). Enhancing Human Performance: Issues, theories, and techniques, (pp. 61– 101. Washington, D.C.: National Academy Press. First citation in articleGoogle Scholar

  • Fontani, G. , Migliorini, S. , Benocci, R. , Facchini, A. , Casini, M. , Corradeschi, F. (2007). Effect of mental imagery on the development of skilled motor actions. Perceptual and Motor Skills, 105 (3), 803– 826. First citation in articleCrossrefGoogle Scholar

  • Frenkel, M. O. (2010). Mentales Training in der orthopädischen Rehabilitation nach Knieendoprothetik.. Dissertation. Verfügbar unter www.ub.uni-heidelberg.de/archiv/10218 . First citation in articleGoogle Scholar

  • Graimann, B. , Pfurtscheller, G. (2006). Quantification and visualization of event-related changes in oscillatory brain activity in the time-frequency domain. Progress in Brain Research, 159, 79– 97. First citation in articleCrossrefGoogle Scholar

  • Hashimoto, Y. , Ushiba, J. , Kimura, A. , Liu, M. G. , Tomita, Y. (2010). Correlation between EEG-EMG coherence during isometric contraction and its imaginary execution. Acta Neurobiologiae Experimentalis, 70, 76– 85. First citation in articleGoogle Scholar

  • Jackson, P. L. , Lafleur, M. F. , Malouin, F. , Richards, C. , Doyon, J. (2001). Potential role of mental practice using motor imagery in neurologic rehabilitation. Archives of Physical Medicine and Rehabilitation, 82, 1113– 41. First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187– 245. First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (2006). Motor Cognition: What Actions Tell the Self. Oxford: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Kranczioch, C. , Mathews, S. , Dean, P. , Sterr, A. (2010). Task Complexity Differentially Affects Executed and Imagined Movement Preparation: Evidence from Movement-Related Potentials. Plos One, 5. First citation in articleCrossrefGoogle Scholar

  • Leocani, L. , Comi, G. (2006). Movement-related event-related desynchronization in neuropsychiatric disorders. Event-Related Dynamics of Brain Oscillations, 159, 351– 366. First citation in articleCrossrefGoogle Scholar

  • Lim, V. K. , Polych, M. A. , Holländer, A. , Byblow, W. D. , Kirk, I. J. , Hamm, J. P. (2006). Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson’s disease. Clinical Neurophysiology, 117, 2308– 2314. First citation in articleCrossrefGoogle Scholar

  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Mayer, J. , Hermann, H.-D., (2009). Mentales Training. Heidelberg: Springer. First citation in articleGoogle Scholar

  • McFarland, D. J. , Miner, L. A. , Vaughan, T. M. , Wolpaw, J. R., (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topography, 12, 177– 186. First citation in articleCrossrefGoogle Scholar

  • Milton, J. , Small, S. L. , Solodkin, A., (2008). Imaging motor imagery: Methodological issues related to expertise. Methods, 45, 336– 341.. First citation in articleCrossrefGoogle Scholar

  • Munzert, J. , Lorey, B. , Zentgraf, K., (2009). Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Research Reviews, 60, 306– 326. First citation in articleCrossrefGoogle Scholar

  • Munzert, J. , Reiser, M., (2007). Vorstellung und mentales Training. In H. Mechling & J. Munzert (Hrsg.). Handbuch Bewegungswissenschaft – Bewegungslehre, (S.  219– 230). Schorndorf: Hofmann. First citation in articleGoogle Scholar

  • Nakata, H. , Yoshie, M. , Miura, A. , Kudo, K., (2010). Characteristics of the athletes’ brain: Evidence from neurophysiology and neuroimaging. Brain Research Reviews, 62, 197– 211. First citation in articleCrossrefGoogle Scholar

  • Neuper, C. , Pfurtscheller, G., (2010). Electroencephalographic characteristics during motor imagery. In. Guillot & C. Collet (Eds.). The neurophysiological foundations of mental and motor imagery, (pp. 65– 81). Oxford: University Press. First citation in articleCrossrefGoogle Scholar

  • Neuper, C. , Scherer, R. , Reiner, M. , Pfurtscheller, G., (2005). Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25, 668– 677. First citation in articleCrossrefGoogle Scholar

  • Pascual-Leone, A. , Nguyet, D. , Cohen, L. G. , Brasil-Neto, J. P. , Cammarota, A. , Hallett, M., (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. Journal of Neurophysiology, 74, 1037– 1045. First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G. , Brunner, C. , Schlogl, A. , da Silva, F. H. L., (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage, 31, 153– 159. First citation in articleCrossrefGoogle Scholar

  • Pfurtscheller, G. , Neuper, C. , Flotzinger, D. , Pregenzer, M., (1997). EEG-based discrimination between imagination of right and left hand movement. Electroencephalography and Clinical Neurophysiology, 103, 642– 651. First citation in articleCrossrefGoogle Scholar

  • Pinel, J. P. J. (2001). Biopsychologie, (2., neubearb. Auflage). Heidelberg: Spektrum. First citation in articleGoogle Scholar

  • Romero, D. H. , Lacourse, M. G. , Lawrence, K. E. , Schandler, S. , Cohen, M. J., (2000). Event-related potentials as a function of movement parameter variations during motor imagery and isometric action. Behavioural Brain Research, 117, 83– 96. First citation in articleCrossrefGoogle Scholar

  • Rossini, P. M. , Rossi, S. , Pasqualetti, P. , Tecchio, F. (1999). Corticospinal excitability modulation to hand muscles during movement imagery. Cerebral Cortex, 9, 161– 167. First citation in articleCrossrefGoogle Scholar

  • Scherer, R. , Mohapp, A. , Grieshofer, P. , Pfurtscheller, G. , Neuper, C., (2007). Sensorimotor EEG patterns during motor imagery in hemiparetic stroke patients. International Journal of Bioelectromagnetism, 9, 155– 162. First citation in articleGoogle Scholar

  • Schnitzler, A. , Salenius, S. , Salmelin, R. , Jousmaki, V. , Hari, R., (1997). Involvement of primary motor cortex in motor imagery: A neuromagnetic study. Neuroimage, 6, 201– 208. First citation in articleCrossrefGoogle Scholar

  • Stecklow, M. V. , Infantosi, A. F. C. , Cagy, M., (2010). EEG changes during sequences of visual and kinesthetic motor imagery. Arq Neuropsichiatr, 68, 556– 561. First citation in articleCrossrefGoogle Scholar

  • Thompson, T. , Steffert, T. , Ros, T. , Leach, J. , Gruzelier, J., (2008). EEG applications for sport and performance. Methods, 45, 279– 288. First citation in articleCrossrefGoogle Scholar

  • Walter, W. G. , Cooper, R. , Aldridge, V. J , McCallum., W. C. , Winter, A. L., (1964). Contingent negative variation: An electric sign of senorimotor association and expectancy in the human brain. Nature, 203, 380– 384. First citation in articleCrossrefGoogle Scholar

  • Wieser, M. , Haefeli, J. , Butler, L. , Jancke, L. , Riener, R. , Koeneke, S., (2010). Temporal and spatial patterns of cortical activation during assisted lower limb movement. Experimental Brain Research, 203, 181– 191. First citation in articleCrossrefGoogle Scholar

  • Yuan, H. , Liu, T. , Szarkowski, R. , Rios, C. , Ashe, J. , He, B., (2010). Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: An EEG and fMRI study of motor imagery and movements. Neuroimage, 49, 2596– 2606. First citation in articleCrossrefGoogle Scholar

  • Ziemainz, H. , Hendrich, S. , Schleinkofer, M. , Pfeifer, K., (2007). Der Einsatz von Mentalem Training in der Rehabilitation von Schlaganfallpatienten – Review und Effektstärkenberechnung. Physical Medicine and Rehabilitation Kuror, 18, 198– 202. First citation in articleCrossrefGoogle Scholar

  • Zimmermann-Schlatter, A. , Schuster, C. , Puhan, M. A. , Siekierka, E. , Steurer, J., (2008). Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. Journal of Neuroengineering and Rehabilitation, 5 (8), doi: 10.1186/1743-0003-5-8. First citation in articleGoogle Scholar