Skip to main content
Published Online:https://doi.org/10.1026/1612-5010/a000184

Zusammenfassung. Ziel des Beitrags ist die Vorstellung der funktionellen Nahinfrarotspektroskopie (fNIRS) als bildgebendes Verfahren, welches zur Messung kortikaler Prozesse während sportlicher Aktivität eingesetzt werden kann. Im Vergleich mit anderen bildgebenden Verfahren ist fNIRS sehr portabel und weniger anfällig für Bewegungsartefakte. Daher ist fNIRS potentiell eine vielversprechende Ergänzung zu bereits in der sportpsychologischen Forschung genutzten neurowissenschaftlichen Methoden. Dieser Beitrag konzentriert sich auf eine kurze Darstellung der grundlegenden physikalischen Prinzipien von fNIRS und eine Analyse der relativen Stärken und Schwächen von fNIRS mit Blick auf den Einsatz in der sportpsychologischen Forschung. Anschließend werden einige fNIRS basierte Forschungsergebnisse erörtert, die sportpsychologische Forschungsfragen betreffen. Abschließend wird beispielhaft eine mögliche sportpsychologische Forschungsfrage vorgestellt, zu deren Untersuchung fNIRS eingesetzt werden kann.


Functional Near-Infrared Spectroscopy in Sport Psychology Research

Abstract. This article aims at introducing functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique for the assessment of cortical processes during physical activity. Compared with other neuroimaging techniques, fNIRS has a relatively low susceptibility to movement artifacts and very high portability. fNIRS could potentially be a useful addition to neuroscientific methods currently used for sport psychology research. This article provides a brief introduction of the basic physical principles of fNIRS and an analysis of the relative strengths and limitations of this method for sport psychology research. Further, a brief discussion is presented of some fNIRS-based findings that are relevant to sport psychology research. To conclude, a sport psychology research perspective where fNIRS will hopefully be used in future research is proposed as an example.

Literatur

  • Altvater-Mackensen, N. & Grossmann, T. (2016). The role of left inferior frontal cortex during audiovisual speech perception in infants. NeuroImage, 133 (3), 14–20. doi: 10.1016/j.neuroimage.2016.02.061 First citation in articleCrossrefGoogle Scholar

  • Balconi, M., Grippa, E. & Vanutelli, M. E. (2015). Resting lateralized activity predicts the cortical response and appraisal of emotions: An fNIRS study. Social Cognitive and Affective Neuroscience, 10 (12), 1607–1614. First citation in articleCrossrefGoogle Scholar

  • Baumeister, R. F., Vohs, K. D. & Tice, D. M. (2007). The strength model of self-control. Current Directions in Psychological Science, 16, 351–355. doi: 10.1111/j.1467-8721.2007.00534.x First citation in articleCrossrefGoogle Scholar

  • Beurskens, R., Helmich, I., Rein, R. & Bock, O. (2014). Age-related changes in prefrontal activity during walking in dual-task situations: A fnirs study. International Journal of Psychophysiology, 92 (3), 122–128. doi: 10.1016/j.ijpsycho.2014.03.005 First citation in articleCrossrefGoogle Scholar

  • Beurskens, R., Steinberg, F., Antoniewicz, F., Wolff, W. & Granacher, U. (2016). Neural correlates of dual-task walking: Effects of cognitive versus motor interference in young adults. Neural Plasticity, 2016. doi: 10.1155/2016/8032180 First citation in articleCrossrefGoogle Scholar

  • Bishop, D. T., Wright, M. J., Jackson, R. C. & Abernethy, B. (2013). Neural bases for anticipation skill in soccer: An fmri study. Journal of Sport & Exercise Psychology, 35 (1), 98–109. doi: 10.1123/jsep.35.1.98 First citation in articleCrossrefGoogle Scholar

  • Boas, D. A., Elwell, C. E., Ferrari, M. & Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: Introduction for the special issue. NeuroImage, 85 (1), 1–5. doi: 10.1016/j.neuroimage.2013.11.033 First citation in articleCrossrefGoogle Scholar

  • Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive Affective & Behavioral Neuroscience, 7, 356–366. doi: 10.3758/cabn.7.4.356 First citation in articleCrossrefGoogle Scholar

  • Brigadoi, S., Ceccherini, L., Cutini, S., Scarpa, F., Scatturin, P., Selb, J.et al. (2014). Motion artifacts in functional near-infrared spectroscopy: A comparison of motion correction techniques applied to real cognitive data. NeuroImage, 85 (14), 181–191. doi: 10.1016/j.neuroimage.2013.04.082 First citation in articleCrossrefGoogle Scholar

  • Cohen, J. R. & Lieberman, M. D. (2010). The common neural basis of exerting self-control in multiple domains. In R. R. Hassin, K. N. Ochsner & Y. Trope (Hrsg.), Self Control in Society, Mind, and Brain (pp. 141–160). New York, NY, US: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Cooper, R. J., Seib, J., Gagnon, L., Phillip, D., Schytz, H. W., Iversen, H. K.et al. (2012). A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Frontiers in Neuroscience, 6 (147). doi: 10.3389/fnins.2012.00147 First citation in articleCrossrefGoogle Scholar

  • Cope, M. & Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by infra-red translumination. Medical & Biological Engineering & Computing, 26, 289–294. doi: 10.1007/BF02447083 First citation in articleCrossrefGoogle Scholar

  • Cutini, S. & Brigadoi, S. (2014). Unleashing the future potential of functional near-infrared spectroscopy in brain sciences. Journal of Neuroscience Methods, 232, 152–156. doi: 10.1016/j.jneumeth.2014.05.024 First citation in articleCrossrefGoogle Scholar

  • Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. (1994). The return of gage, phnieas-clues above the brain from the skull of a famous patient. Science, 264 (5162), 1102–1105. doi: 10.1126/science.8178168 First citation in articleCrossrefGoogle Scholar

  • Debener, S., Minow, F., Emkes, R., Gandras, K. & De Vos, M. (2012). How about taking a low-cost, small, and wireless EEG for a walk?Psychophysiology, 49, 1617–1621. doi: 10.1111/j.1469-8986.2012.01471.x First citation in articleCrossrefGoogle Scholar

  • Delorme, A., Sejnowski, T. & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34, 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004 First citation in articleCrossrefGoogle Scholar

  • Delpy, D. T., Cope, M., Vanderzee, P., Arridge, S., Wray, S. & Wyatt, J. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine and Biology, 33 (12), 1433–1442. doi: 10.1088/0031-9155/33/12/008 First citation in articleCrossrefGoogle Scholar

  • Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Fallon, P., Tyszczuk, L.et al.Delpy, D. T. (1996). Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatric Research, 39, 889–894. doi: 10.1203/ First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P. (2003). Pleasure and displeasure from the body: Perspectives from exercise. Cognition & Emotion, 17, 213–239. doi: 10.1080/02699930302292 First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P. (2009). Illuminating the black box: Investigating prefrontal cortical hemodynamics during exercise with near-infrared spectroscopy. Journal of Sport & Exercise Psychology, 31, 505–553. doi: 10.1123/jsep.31.4.505 First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P., Hall, E. E. & Petruzzello, S. J. (2004). Practical markers of the transition from aerobic to anaerobic metabolism during exercise: Rationale and a case for affect-based exercise prescription. Preventive Medicine, 38 (2), 149–159. doi: 10.1016/j.ypmed.2003.09.038 First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P., Hall, E. E. & Petruzzello, S. J. (2005). Variation and homogeneity in affective responses to physical activity of varying intensities: An alternative perspective on dose-response based on evolutionary considerations. Journal of Sports Sciences, 23 (5), 477–500. doi: 10.1080/02640410400021492 First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P., Hall, E. E. & Petruzzello, S. J. (2008). The relationship between exercise intensity and affective responses demystified: To crack the 40-year-old nut, replace the 40-year-old nutcracker!Annals of Behavioral Medicine, 35 (2), 136–149. doi: 10.1007/s-z First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P., Hall, E. E., VanLanduyt, L. M. & Petruzzello, S. J. (2000). Walking in (affective) circles: Can short walks enhance affect?Journal of Behavioral Medicine, 23, 245–275. doi: 10.1023/a:1005558025163 First citation in articleCrossrefGoogle Scholar

  • Ekkekakis, P., Parfitt, G. & Petruzzello, S. J. (2011). The pleasure and displeasure people feel when they exercise at different intensities decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Medicine, 41, 641–671. doi: 10.2165/ First citation in articleCrossrefGoogle Scholar

  • Englert, C. & Bertrams, A. (2012). Anxiety, ego depletion, and sports performance. Journal of Sport & Exercise Psychology, 34, 580–599. doi: 10.1123/jsep.34.5.580 First citation in articleCrossrefGoogle Scholar

  • Englert, C. & Wolff, W. (2015). Ego depletion and persistent performance in a cycling task. International Journal of Sport Psychology, 46 (2), 137–151. doi: 10.7352/ijsp2015.46.137 First citation in articleGoogle Scholar

  • Essenpreis, M., Elwell, C. E., Cope, M., Vanderzee, P., Arridge, S. R. & Delpy, D. T. (1993). Spectral dependence of temporal point spread functions in human tissues. Applied Optics, 32, 418–425. doi: 10.1364/AO.32.000418 First citation in articleCrossrefGoogle Scholar

  • Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K. R. & Blankertz, B. (2012). Enhanced performance by a hybrid NIRS–EEG brain computer interface. NeuroImage, 59 (1), 519–529. doi: 10.1016/j.neuroimage.2011.07.084 First citation in articleCrossrefGoogle Scholar

  • Ferrari, M., Mottola, L. & Quaresima, V. (2004). Principles, techniques, and limitations of near infrared spectroscopy. Canadian Journal of Applied Physiology-Revue Canadienne De Physiologie Appliquee, 29, 463–487. doi: 10.1139/h04-031 First citation in articleCrossrefGoogle Scholar

  • Ferrari, M. & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63 (2), 921–935. doi: 10.1016/j.neuroimage.2012.03.049 First citation in articleCrossrefGoogle Scholar

  • Fishburn, F. A., Norr, M. E., Medvedev, A. V. & Vaidya, C. J. (2014). Sensitivity of fNIRS to cognitive state and load. Frontiers in Human Neuroscience, 8 (76). doi: 10.3389/fnhum.2014.00076 First citation in articleCrossrefGoogle Scholar

  • Gratton, G., Maier, J. S., Fabiani, M., Mantulin, W. W. & Gratton, E. (1994). Feasibility of intracranial near-infrared optical scanning. Psychophysiology, 31, 211–215. doi: 10.1111/j.1469-8986.1994.tb01043.x First citation in articleCrossrefGoogle Scholar

  • Hagger, M. S., Wood, C. W., Stiff, C. & Chatzisarantis, N. L. D. (2010). Self-regulation and self-control in exercise: The strength-energy model. International Review of Sport and Exercise Psychology, 3 (1), 62–86. doi: 10.1080/17509840903322815 First citation in articleCrossrefGoogle Scholar

  • He, J. W., Tian, F., Liu, H. & Peng, Y. B. (2012). Cerebrovascular responses of the rat brain to noxious stimuli as examined by functional near-infrared whole brain imaging. Journal of Neurophysiology, 107, 2853–2865. doi: 10.1152/jn.00050.2011 First citation in articleCrossrefGoogle Scholar

  • Helmich, I., Holle, H., Rein, R. & Lausberg, H. (2015). Brain oxygenation patterns during the execution of tool use demonstration, tool use pantomime, and body-part-as-object tool use. International Journal of Psychophysiology, 96 (1), 1–7. doi: 10.1016/j.ijpsycho.2015.03.001 First citation in articleCrossrefGoogle Scholar

  • Hoffmann, S. & Wascher, E. (2012). Spatial cueing modulates the monitoring of correct responses. Neuroscience Letters, 506, 225–228. doi: 10.1016/j.neulet.2011.11.011 First citation in articleCrossrefGoogle Scholar

  • Holtzer, R., Mahoney, J. R., Izzetoglu, M., Izzetoglu, K., Onaral, B. & Verghese, J. (2011). Fnirs study of walking and walking while talking in young and old individuals. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 66, 879–887. doi: 10.1093/gerona/glr068 First citation in articleCrossrefGoogle Scholar

  • Huppert, T. J., Diamond, S. G., Franceschini, M. A. & Boas, D. A. (2009). HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics 48 (10): D280–98. doi: 10.1364/AO.48.00D280 First citation in articleCrossrefGoogle Scholar

  • Inzlicht, M., Schmeichel, B. J. & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18 (3), 127–133. doi: 10.1016/j.tics.2013.12.009 First citation in articleCrossrefGoogle Scholar

  • Izzetoglu, M., Chitrapu, P., Bunce, S. & Onaral, B. (2010). Motion artifact cancellation in nir spectroscopy using discrete kalman filtering. Biomedical Engineering Online, 9 (16). doi: 10.1186/1475-925x-9-16 First citation in articleCrossrefGoogle Scholar

  • Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198 (4323), 1264–1267. doi: 10.1126/science.929199 First citation in articleCrossrefGoogle Scholar

  • Kelley, W. M., Wagner, D. D. & Heatherton, T. F. (2015). In search of a human self-regulation system. Annual Review of Neuroscience, 38, 389–411. doi: 10.1146/annurev-neuro-071013-014243 First citation in articleCrossrefGoogle Scholar

  • Krüger, B., Bischoff, M., Blecker, C., Langhanns, C., Kindermann, S., Sauerbier, I.et al. (2014). Parietal and premotor cortices: Activation reflects imitation accuracy during observation, delayed imitation and concurrent imitation. NeuroImage, 100 (4), 39–50. doi: 10.1016/j.neuroimage.2014.05.074 First citation in articleCrossrefGoogle Scholar

  • Leon-Carrion, J., Damas-Lopez, J., Martin-Rodriguez, J. F., Dominguez-Roldan, J. M., Murillo-Cabezas, F., Martin, J. & Dominguez-Morales, M. R. (2008). The hemodynamics of cognitive control: The level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task. Behavioural Brain Research, 193, 248–256. doi: 10.1016/j.bbr.2008.06.013 First citation in articleCrossrefGoogle Scholar

  • Litvak, V., Mattout, J., Kiebel, S., Phillips, C., Henson, R., Kilner, J.et al. (2011). EEG and MEG data analysis in SPM8. Computational Intelligence and Neuroscience. doi:10.1155/2011/852961 First citation in articleCrossrefGoogle Scholar

  • Liu, N., Cui, X., Bryant, D. M., Glover, G. H. & Reiss, A. L. (2015). Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy. Biomedical Optics Express, 6, 1074–1089. doi: 10.1364/boe.6.001074 First citation in articleCrossrefGoogle Scholar

  • McKendrick, R., Parasuraman, R. & Ayaz, H. (2015). Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): Expanding vistas for neurocognitive augmentation. Frontiers in Systems Neuroscience, 9 (27), 27. doi: 10.3389/fnsys.2015.00027 First citation in articleCrossrefGoogle Scholar

  • Meyer-Lindenberg, A. (2010). From maps to mechanisms through neuroimaging of schizophrenia. Nature, 468 (7321), 194–202. doi: 10.1038/nature09569 First citation in articleCrossrefGoogle Scholar

  • Molavi, B. & Dumont, G. A. (2012). Wavelet-based motion artifact removal for functional near-infrared spectroscopy. Physiological Measurement, 33, 259–270. doi: 10.1088/0967-3334/33/2/259 First citation in articleCrossrefGoogle Scholar

  • Muller, N. G. & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139 (1), 51–58. doi: 10.1016/j.neuroscience.2005.09.018 First citation in articleCrossrefGoogle Scholar

  • Petruzzello, S. J., Ekkekakis, P. & Hall, E. E. (2006). Physical activity, affect, and electroencephalogram studies. In E. O. Acevedo & P. Ekkekakis (Hrsg.), Psychobiology of Physical Activity (pp. 111–128). Champaign, IL, US: Human Kinetics. First citation in articleGoogle Scholar

  • Piper, S. K., Krueger, A., Koch, S. P., Mehnert, J., Habermehl, C., Steinbrink, J.et al. (2014). A wearable multi-channel fNIRS system for brain imaging in freely moving subjects. Neuroimage, 85 (5), 64–71. doi: 10.1016/j.neuroimage.2013.06.062 First citation in articleCrossrefGoogle Scholar

  • Ring, C., Cooke, A., Kavussanu, M., McIntyre, D. & Masters, R. (2015). Investigating the efficacy of neurofeedback training for expediting expertise and excellence in sport. Psychology of Sport and Exercise, 16, 118–127. doi: 10.1016/j.psychsport.2014.08.005 First citation in articleCrossrefGoogle Scholar

  • Rooks, C. R., Thom, N. J., McCully, K. K. & Dishman, R. K. (2010). Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: A systematic review. Progress in Neurobiology, 92 (2), 134–150. doi: 10.1016/j.pneurobio.2010.06.002 First citation in articleCrossrefGoogle Scholar

  • Schindler, S. & Wolff, W. (2015). Cerebral correlates of automatic associations towards performance enhancing substances. Frontiers in Psychology, 6, 1923. doi: 10.3389/fpsyg.2015.01923 First citation in articleCrossrefGoogle Scholar

  • Schindler, S., Wolff, W., Kissler, J. M. & Brand, R. (2015). Cerebral correlates of faking: evidence from a brief implicit association test on doping attitudes. Frontiers in Behavioral Neuroscience, 9 (139). doi:10.3389/fnbeh.2015.00139 First citation in articleCrossrefGoogle Scholar

  • Schneider, M., Dunn, A. & Cooper, D. (2009). Affect, exercise, and physical activity among healthy adolescents. Journal of Sport & Exercise Psychology, 31, 706–723. First citation in articleCrossrefGoogle Scholar

  • Scholkmann, F., Spichtig, S., Muehlemann, T. & Wolf, M. (2010). How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiological Measurement, 31, 649–662. doi: 10.1088/0967-3334/31/5/004 First citation in articleCrossrefGoogle Scholar

  • Scholkmann, F. & Wolf, M. (2013). General equation for the differential pathlength factor of the frontal human head depending on wavelength and age. Journal of Biomedical Optics, 18 (10). doi: 10.1117/1.jbo.18.10.105004 First citation in articleCrossrefGoogle Scholar

  • Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Pavia, J. M., Wolf, U. & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85 (2), 6–27. doi: 10.1016/j.neuroimage.2013.05.004 First citation in articleCrossrefGoogle Scholar

  • Seiler, B. D., Monsma, E. V. & Newman-Norlund, R. D. (2015). Biological evidence of imagery abilities: Intraindividual differences. Journal of Sport & Exercise Psychology, 37, 421–435. doi: 10.1123/jsep.2014–0303 First citation in articleCrossrefGoogle Scholar

  • Tallgren, P., Vanhatalo, S., Kaila, K. & Voipio, J. (2005). Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clinical Neurophysiology, 116, 799–806. doi: 10.1016/j.clinph.2004.10.001 First citation in articleCrossrefGoogle Scholar

  • Tempest, G. D., Eston, R. G. & Parfitt, G. (2014). Prefrontal cortex haemodynamics and affective responses during exercise: A multi-channel near infrared spectroscopy study. Plos One, 9 (5). doi: 10.1371/journal.pone.0095924 First citation in articleCrossrefGoogle Scholar

  • Thompson, T., Steffert, T., Ros, T., Leach, J. & Gruzelier, J. (2008). EEG applications for sport and performance. Methods, 45, 279–288. doi: 10.1016/j.ymeth.2008.07.006 First citation in articleCrossrefGoogle Scholar

  • Walsh, V. (2014). Is sport the brain’s biggest challenge?Current Biology, 24 (18), R859-R860. doi: 10.1016/j.cub.2014.08.003 First citation in articleCrossrefGoogle Scholar

  • Ward, T. E., Soraghan, C. J., Matthews, F. & Markham, C. (2007). A concept for extending the applicability of constraint-induced movement therapy through motor cortex activity feedback using a neural prosthesis. Computational intelligence and neuroscience, 51363. doi: 10.1155/2007/51363 First citation in articleGoogle Scholar

  • Williams, D. M., Dunsiger, S., Ciccolo, J. T., Lewis, B. A., Albrecht, A. E. & Marcus, B. H. (2008). Acute affective response to a moderate-intensity exercise stimulus predicts physical activity participation 6 and 12 months later. Psychology of Sport and Exercise, 9, 231–245. doi: 10.1016/j.psychsport.2007.04.002 First citation in articleCrossrefGoogle Scholar

  • Wolff, W., Schindler, S., Englert, C., Brand, R. & Kissler, J. (2016). Uninstructed BIAT faking when ego depleted or in normal state: differential effect on brain and behavior. Bmc Neuroscience, 17 (18). doi: 10.1186/s-8 First citation in articleCrossrefGoogle Scholar