Skip to main content
Article

Distraction Reduces Both Early and Late Electrocutaneous Stimulus Evoked Potentials

Published Online:https://doi.org/10.1027/0269-8803/a000079

Previous electroencephalography studies revealed mixed effects of sustained distraction on early negative and later positive event-related potential components evoked by electrocutaneous stimuli. In our study we further examined the influence of sustained distraction to clarify these discrepancies. Electrocutaneous stimuli of three intensities were delivered in pulse trains to the forearm either while participants attended the stimuli or while they performed a mental-arithmetic or a word-association distraction task. The amplitudes of the N1 and the late P2/P3a components were attenuated during both distraction tasks. These results seem to resolve the debate concerning the attentional modulation of the N1 component. Furthermore, we observed that the amplitude of the late P2/P3a component was strongly affected by stimulus change, in line with the opinion that this component is actually a P3a orienting response. Our study additionally revealed that habituation effects were reflected in lower intensity ratings and reduced amplitudes of the N1 and P3a components. The latter effects were independent of the type of task, which suggests that habituation is unaffected by attention.

References

  • Bantick, S. J. , Wise, R. G. , Ploghaus, A. , Clare, S. , Smith, S. M. , Tracey, I. (2002). Imaging how attention modulated pain in humans using functional MRI. Brain, 125, 310–319. First citation in articleCrossrefGoogle Scholar

  • Beydoun, A. , Morrow, T. J. , Shen, J. F. , Casey, K. L. (1993). Variability of laser-evoked potentials: Attention, arousal, and lateralized differences. Electroencephalography and Clinical Neurophysiology, 88, 173–181. First citation in articleCrossrefGoogle Scholar

  • Bromm, B. , Chen, A. C. N. (1995). Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation. Electroencephalography and Clinical Neurophysiology, 95, 14–26. First citation in articleCrossrefGoogle Scholar

  • Crottaz-Herbette, S. , Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18, 766–780. First citation in articleCrossrefGoogle Scholar

  • Desmedt, J. E. , Robertson, D. (1977). Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. The Journal of Physiology, 271, 761–782. First citation in articleCrossrefGoogle Scholar

  • Dowman, R. (2004a). Distraction produces an increase in pain-evoked anterior cingulate activity. Psychophysiology, 41, 613–624. First citation in articleCrossrefGoogle Scholar

  • Dowman, R. (2004b). Electrophysiological indices of orienting attention towards pain. Psychophysiology, 41, 749–761. First citation in articleCrossrefGoogle Scholar

  • Dowman, R. (2004c). The pain-evoked P2 is not a P3a event-related potential. Brain Topography, 17, 3–12. First citation in articleCrossrefGoogle Scholar

  • Dowman, R. , Darcey, T. , Barkan, H. , Thadani, V. , Roberts, D. (2007). Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage, 34, 743–763. First citation in articleCrossrefGoogle Scholar

  • Frankenstein, U. N. , Richter, W. , McIntyre, M. C. , Rémy, F. (2001). Distraction modulates anterior cingulate gyrus activations during cold pressor test. NeuroImage, 14, 827–836. First citation in articleCrossrefGoogle Scholar

  • Friedman, D. , Cycowicz, Y. M. , Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373. First citation in articleCrossrefGoogle Scholar

  • García-Larrea, L. , Frot, M. , Valeriani, M. (2003). Brain generators of laser-evoked potentials: From dipoles to functional significance. Journal of Clinical Neurophysiology, 33, 279–292. First citation in articleCrossrefGoogle Scholar

  • García-Larrea, L. , Peyron, R. , Laurent, B. , Mauguière, F. (1997). Association and dissociation between laser-evoked potentials and pain perception. Neuroreport, 8, 3785–3789. First citation in articleCrossrefGoogle Scholar

  • Gratton, G. , Coles, M. G. H. , Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484. First citation in articleCrossrefGoogle Scholar

  • Hodes, R. L. , Rowland, E. W. , Lightfoot, N. , Cleeland, C. S. (1990). The effects of distraction on responses to cold pressor pain. Pain, 41, 109–114. First citation in articleCrossrefGoogle Scholar

  • Kandel, E. R. , Schwartz, J. H. , Jessell, T. M. (2000). Principles of neural science (4th ed.). New York, NY: McGraw-Hill. First citation in articleGoogle Scholar

  • Legrain, V. , Guérit, J. M. , Bruyer, R. , Plaghki, L. (2002). Attentional modulation of the nociceptive processing into the human brain: Selective spatial attention, probability of stimulus occurrence, and target detection effects on laser evoked potentials. Pain, 99, 21–39. First citation in articleCrossrefGoogle Scholar

  • Legrain, V. , Guérit, J. M. , Bruyer, R. , Plaghki, L. (2003). Electrophysiological correlates of attentional orientation in humans to strong intensity deviant nociceptive stimuli, inside and outside of the focus of spatial attention. Neuroscience Letters, 339, 107–110. First citation in articleCrossrefGoogle Scholar

  • Legrain, V. , Perchet, C. , García-Larrea, L. (2009). Involuntary orienting of attention to nociceptive events: Neural and behavioral signatures. Journal of Neurophysiology, 102, 2423–2434. First citation in articleCrossrefGoogle Scholar

  • Lenz, F. A. , Rios, M. , Zirh, A. , Chau, D. , Krauss, G. , Lesser, R. P. (1998). Painful stimuli evoke potentials recorded over the human anterior cingulate gyrus. Journal of Neurophysiology, 79, 2231–2234. First citation in articleGoogle Scholar

  • Lorenz, J. , García-Larrea, L. (2003). Contribution of attentional and cognitive factors to laser evoked brain potentials. Journal of Clinical Neurophysiology, 33, 293–301. First citation in articleCrossrefGoogle Scholar

  • Penfield, W. , Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389–443. First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2003). Theoretical overview of P3a and P3b. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 83–98). Boston, MA: Kluwer Academic Press. First citation in articleCrossrefGoogle Scholar

  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Journal of Clinical Neurophysiology, 118, 2128–2148. First citation in articleCrossrefGoogle Scholar

  • Rémy, F. , Frankenstein, U. N. , Mincic, A. , Tomanek, B. , Stroman, P. W. (2003). Pain modulates cerebral activity during cognitive performance. NeuroImage, 19, 655–664. First citation in articleCrossrefGoogle Scholar

  • Siedenberg, R. , Treede, R. D. (1996). Laser-evoked potentials: Exogenous and endogenous components. Electroencephalography and Clinical Neurophysiology, 100, 240–249. First citation in articleCrossrefGoogle Scholar

  • Thees, S. , Blankenburg, F. , Taskin, B. , Curio, G. , Villringer, A. (2003). Dipole source localization and fMRI of simultaneously recorded data applied to somatosensory categorization. NeuroImage, 18, 707–719. First citation in articleCrossrefGoogle Scholar

  • Treede, R. D. , Kenshalo, D. R. , Gracely, R. H. , Jones, A. K. P. (1999). The cortical representation of pain. Pain, 79, 105–111. First citation in articleCrossrefGoogle Scholar

  • Treede, R. D. , Kief, S. , Hölzer, T. , Bromm, B. (1988). Late somatosensory evoked cerebral potentials in response to cutaneous heat stimuli. Electroencephalography and Clinical Neurophysiology, 70, 429–441. First citation in articleCrossrefGoogle Scholar

  • Treede, R. D. , Lorenz, J. , Baumgartner, U. (2003). Clinical usefulness of laser-evoked potentials. Journal of Clinical Neurophysiology, 33, 303–314. First citation in articleCrossrefGoogle Scholar

  • Valentini, E. , Hu, L. , Chakrabarti, B. , Hu, Y. , Aglioti, S. M. , Iannetti, G. D. (2012). The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage, 59, 1571–1581. First citation in articleCrossrefGoogle Scholar

  • Van der Heide, E. M. , Buitenweg, J. R. , Marani, E. , Rutten, W. L. C. (2009). Single pulse and pulse train modulation of cutaneous electrical stimulation: A comparison of methods. Journal of Clinical Neurophysiology, 26, 54–60. First citation in articleCrossrefGoogle Scholar

  • Van der Lubbe, R. H. J. , Buitenweg, J. R. , Boschker, M. , Gerdes, B. , Jongsma, M. L. A. (2012). The influence of transient spatial attention on the processing of intracutaneous electrical stimuli examined with ERPs. Journal of Clinical Neurophysiology, 123, 947–959. First citation in articleCrossrefGoogle Scholar

  • Veldhuijzen, D. S. , Kenemans, J. L. , de Bruin, C. M. , Olivier, B. , Volkerts, E. R. (2006). Pain and attention: Attentional disruption or distraction? The Journal of Pain, 7, 11–20. First citation in articleCrossrefGoogle Scholar

  • Yamasaki, H. , Kakigi, R. , Watanabe, S. , Hoshiyama, M. (2000). Effects of distraction on pain-related somatosensory evoked magnetic fields and potentials following painful electrical stimulation. Cognitive Brain Research, 9, 165–175. First citation in articleCrossrefGoogle Scholar