Skip to main content
Article

Brain Activity During Resting State in Relation to Academic Performance

Evidence of Neural Efficiency

Published Online:https://doi.org/10.1027/0269-8803/a000107

EEG coherence has been widely used to investigate brain activity and learning. However, relatively little is known about the relationship between resting-state EEG coherence and academic performance. The present study investigated this relationship with 140 healthy, normal participants. EEG was recorded during resting periods, with eyes open for 3 min, and the recordings were analyzed for 64 electrode positions in the theta (4–8 Hz), alpha (8–12 Hz), and beta (12–25 Hz) frequency bands. Coherence, defined as the spectral cross-correlation between two signals normalized by their power spectra, was calculated. Short- and long-range intrahemispheric coherence within each hemisphere and interhemispheric coherence across the left and right hemispheres were then computed and compared for each of the theta, alpha, and beta bands. The results showed that academic performance, as measured by grade point average (GPA), was negatively correlated with short-range intrahemispheric alpha and beta coherences in both hemispheres and with interhemispheric alpha and beta coherences in the temporal cortical regions. Therefore, better academic performers demonstrated more decoupling of brain areas when resting with eyes open. This is consistent with a model that relates decreased coherence to neural efficiency.

References

  • Aguirre-Pérez, D. M. , Otero-Ojeda, G. A. , Pliego-Rivero, F. B. , Ferreira-Martínez, A. A. (2007). Relationship of working memory and EEG to academic performance: A study among high school students. International Journal of Neuroscience, 117, 869–882. First citation in articleCrossrefGoogle Scholar

  • Babiloni, C. , Vecchio, F. , Mirabella, G. , Buttiglione, M. , Sebastiano, F. , Picardi, A. , … Eusebi, F. (2008). Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to an immediate recall during rey auditory verbal learning test. Human Brain Mapping, 30, 2077–2089. First citation in articleCrossrefGoogle Scholar

  • Barry, R. J. , Clarke, A. R. , McCarthy, R. , Selikowitz, M. (2009). EEG coherence in children with attention-deficit/hyperactivity disorder and comorbid reading disabilities. International Journal of Psychophysiology, 71, 205–210. First citation in articleCrossrefGoogle Scholar

  • Broyd, S. J. , Demanuele, C. , Debener, S. , Helps, S. K. , James, C. J. , Sonuga-Barke, W. J. (2009). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral Reviews, 33, 279–296. First citation in articleCrossrefGoogle Scholar

  • Chatrian, G. E. , Lettich, E. , Nelson, P. L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. American Journal of Electroneurodiagnostic Technology, 25, 83–92. First citation in articleGoogle Scholar

  • Chen, J. , Ros, T. , Gruzelier, J. H. (2013). Dynamic changes of ICA-derived EEG functional connectivity in the resting state. Human Brain Mapping, 34, 852–868. First citation in articleCrossrefGoogle Scholar

  • Cheung, M. C. , Chan, A. S. , Sze, S. L. (2009). Increased theta coherence during Chinese reading. International Journal of Psychophysiology, 74, 132–138. First citation in articleCrossrefGoogle Scholar

  • Cheung, M. C. , Chan, A. S. , Sze, S. L. (2010). Electrophysiological correlates of brand names. Neuroscience Letters, 485, 178–182. First citation in articleCrossrefGoogle Scholar

  • Clarke, A. R. , Barry, R. J. , Heaven, P. C. L. , McCarthy, R. , Selikowitz, M. , Byrne, M. K. (2008). EEG coherence in adults with attention-deficit/hyperactivity disorder. International Journal of Psychophysiology, 67, 35–40. First citation in articleCrossrefGoogle Scholar

  • Coben, R. , Clarke, A. R. , Hudspeth, W. , Barry, R. J. (2008). EEG power and coherence in autistic spectrum disorder. Clinical Neurophysiology, 119, 1002–1009. First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates. First citation in articleGoogle Scholar

  • Crespo-Garcia, M. , Pinal, D. , Cantero, J. L. , Díaz, F. , Zurrón, M. (2013). Working memory processes are mediated by local and long-range synchronization of alpha oscillations. Journal of Cognitive Neuroscience, 25, 1343–1357. First citation in articleCrossrefGoogle Scholar

  • Damoiseaux, J. S. , Rombouts, S. A. , Barkhof, F. , Scheltens, P. , Stam, C. J. , Smith, S. M. , Beckmann, C. F. (2006). Consistent resting-state networks across healthy subjects. Proceedings of National Academy of Sciences USA, 103, 13848–13853. First citation in articleCrossrefGoogle Scholar

  • Dunn, B. R. , Reddix, M. D. (1991). Modal processing style differences in the recall of expository text and poetry. Learning and Individual Differences, 3, 265–293. First citation in articleCrossrefGoogle Scholar

  • Dupuy, F. E. , Clarke, A. R. , Barry, R. J. , McCarthy, R. , Selikowitz, M. (2008). EEG coherence in girls with attention-deficit/hyperactivity disorder: Stimulant effects in good responders. International Journal of Psychophysiology, 70, 151–157. First citation in articleCrossrefGoogle Scholar

  • Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26, 15–29. First citation in articleGoogle Scholar

  • Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 2836–2845. First citation in articleCrossrefGoogle Scholar

  • Freunberger, R. , Fellinger, R. , Sauseng, P. , Gruber, W. , Klimesch, W. (2009). Dissociation between phase-locked and nonphase-locked alpha oscillations in a working memory task. Human Brain Mapping, 30, 3417–3425. First citation in articleCrossrefGoogle Scholar

  • Freunberger, R. , Klimesch, W. , Griesmayr, B. , Sauseng, P. , Gruber, W. (2008). Alpha, phase coupling reflects objects recognition. Neuroimage, 42, 928–935. First citation in articleCrossrefGoogle Scholar

  • Gasser, T. , Jennen-Steinmetz, C. , Verleger, R. (1987). EEG coherence at rest and during a visual task in two groups of children. Electroencephalography and Clinical Neurophysiology, 67, 151–158. First citation in articleCrossrefGoogle Scholar

  • Greicius, M. D. , Krasnow, B. , Reiss, A. L. , Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of National Academy of Sciences USA, 100, 253–258. First citation in articleGoogle Scholar

  • Haier, R. J. , Neuchterlein, K. H. , Hazlett, E. , Wu, J. C. , Peak, J. , Browning, H. L. , Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199–217. First citation in articleCrossrefGoogle Scholar

  • Haier, R. J. , Siegel, B. , Tang, C. , Abel, L. , Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415–426. First citation in articleCrossrefGoogle Scholar

  • Jann, K. , Dierks, T. , Boesch, C. , Kottlow, M. , Strik, W. , Koenig, T. (2009). BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage, 45, 903–916. First citation in articleCrossrefGoogle Scholar

  • Jausovec, N. (1996). Difference in EEG alpha activity related to giftness. Intelligence, 23, 159–173. First citation in articleCrossrefGoogle Scholar

  • Jausovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237. First citation in articleCrossrefGoogle Scholar

  • Jausovec, N. , Jausovec, K. (2000). Differences in resting EEG related to ability. Brain Topography, 12, 259–273. First citation in articleCrossrefGoogle Scholar

  • Jausovec, N. , Jausovec, K. (2003). Spatiotemporal brain activity related to intelligence: A low resolution brain electromagnetic tomography study. Cognitive Brain Research, 16, 267–272. First citation in articleCrossrefGoogle Scholar

  • Jausovec, N. , Jausovec, K. (2008). Spatial rotation and recognizing emotions: Gender related differences in brain activity. Intelligence, 36, 383–393. First citation in articleCrossrefGoogle Scholar

  • Kirov, R. , Weiss, C. , Siebner, H. R. , Born, J. , Marshall, L. (2009). Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proceedings of National Academy of Sciences USA, 106, 15460–15465. First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195. First citation in articleCrossrefGoogle Scholar

  • Klimesch, W. , Sauseng, P. , Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63–88. First citation in articleGoogle Scholar

  • Leisman, G. , Ashkenazi, M. (1980). Aetiological factors in dyslexia. Neuroscience, 11, 157–164. First citation in articleGoogle Scholar

  • McKay, M. T. , Fischler, I. , Dunn, R. R. (2003). Cognitive style and recall of text: An EEG analysis. Learning and Individual Differences, 14, 1–21. First citation in articleCrossrefGoogle Scholar

  • Marosi, E. , Harmony, T. , Becker, J. , Reyes, A. , Bernal, J. , Fernández, T. , … Guerrero, V. (1995). Electroencephalographic coherences discriminate between children with different pedagogical evaluation. International Journal of Psychophysiology, 19, 23–32. First citation in articleCrossrefGoogle Scholar

  • Marosi, E. , Harmony, T. , Sánchez, L. , Becker, J. , Bernal, J. , Reyes, A. , … Fernández, T. (1992). Maturation of the coherence of EEG activity in normal and learning-disabled children. Electroencephalography and Clinical Neurophysiology, 83, 350–357. First citation in articleCrossrefGoogle Scholar

  • Mima, T. , Oluwatimilehin, T. , Hiroak, T. , Hallet, M. (2001). Transient interhemispheric neural synchrony correlates with object recognition. Journal of Neuroscience, 21, 3942–3948. First citation in articleGoogle Scholar

  • Neubauer, A. C. , Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33, 1004–1023. First citation in articleCrossrefGoogle Scholar

  • Palva, S. , Palva, J. M. (2007). New vision for alpha-frequency band oscillations. Trends in Neuroscience, 30, 150–158. First citation in articleCrossrefGoogle Scholar

  • Palva, S. , Palva, J. M. (2011). Functional role of alpha-band phase synchronization in local and large-scale cortical networks. Frontiers in Psychology, 2, 204. doi: 10.3389/fpsyg.2011.00204 First citation in articleCrossrefGoogle Scholar

  • Petsche, H. (1997). EEG coherence and mental activity. In F. Angeleri, S. Butler, S. Giaquinto, J. Majakowski (Eds.), Analysis of the electrical activity of the brain (pp. 141–168). Chichester, UK: John Wiley and Sons Ltd. First citation in articleGoogle Scholar

  • Raichle, M. E. , MacLeod, A. M. , Snyder, A. Z. , Powers, W. J. , Gusnard, D. A. , Shulman, G. L. (2001). A default mode of brain function. Proceedings of National Academy of Sciences USA, 98, 676–682. First citation in articleCrossrefGoogle Scholar

  • Sauseng, P. , Hoppe, J. , Klimesch, W. , Gerloff, C. , Hummel, F. C. (2007). Dissociation of sustained attention from central executive functions: Local activity and interregional connectivity in the theta range. European Journal of Neuroscience, 25, 587–593. First citation in articleCrossrefGoogle Scholar

  • Schmid, R. G. , Tirsch, W. S. , Rappelsberger, P. , Weinmann, H. M. , Pöppl, S. J. (1992). Comparative coherence studies in healthy volunteers and Down’s syndrome patients from childhood to adult age. Electroencephalography and Clinical Neurophysiology, 83, 112–123. First citation in articleCrossrefGoogle Scholar

  • Thatcher, R. W. , Krause, P. J. , Hrybyk, M. (1986). Cortico-cortical associations and EEG coherence: A two-compartmental model. Electroencephalography and Clinical Neurophysiology, 64, 123–143. First citation in articleCrossrefGoogle Scholar

  • Thatcher, R. W. , McAlaster, R. , Lester, M. L. , Horst, R. L. , Cantor, D. S. (1983). Hemispheric EEG asymmetries related to cognitive functioning in children. In A. Perecuman (Ed.), Cognitive processing in the right hemisphere (pp. 125–146). Orlando, FL: Academic Press. First citation in articleCrossrefGoogle Scholar

  • Thatcher, R. W. , North, D. , Biver, C. (2005). EEG and intelligence: Relation between EEG coherence, EEG phase delay and power. Clinical Neurophysiology, 116, 2129–2141. First citation in articleCrossrefGoogle Scholar

  • Thatcher, R. W. , North, D. M. , Biver, C. (2008). Development of cortical connections as measured by EEG coherence and phase delays. Human Brain Mapping, 29, 1400–1415. First citation in articleCrossrefGoogle Scholar

  • Thatcher, R. W. , Walker, R. A. (1985). EEG coherence and intelligence in children. Electroencephalography and Clinical Neurophysiology, 61, S161. First citation in articleGoogle Scholar

  • van den Heuvel, M. P. , Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519–534. First citation in articleCrossrefGoogle Scholar

  • Varela, F. J. , Lachaux, J. P. , Rodriguez, E. , Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–238. First citation in articleCrossrefGoogle Scholar

  • Weiss, S. , Mueller, H. M. (2003). The contribution of EEG coherence to the investigation of language. Brain and Language, 85, 325–343. First citation in articleCrossrefGoogle Scholar