Skip to main content

Connectivity of Superior Temporal Sulcus During Target Detection

Published Online:https://doi.org/10.1027/0269-8803/a000151

Abstract. The aim of the current research was to study functional connectivity (FC) of the right superior temporal sulcus (rSTS) during visual target stimulus processing. This structure is presumed to be crucial in social cognition, but evidently participates in target detection as well. Twenty subjects participated in functional magnetic resonance examination for studying FC. We used psychophysiological interaction (PPI) analysis of data acquired during the visual oddball task. During the visual oddball task rSTS had increased connectivity bilaterally with structures involved in memory operations (mesiotemporal cortices and basal ganglia) and evaluative processing related to decision making (left anterior cingulate cortex). Moreover, we revealed decreased connectivity of rSTS with structures involved in attentional processes (right dorsolateral prefrontal cortex (DLPFC) and the posterior area with bilateral parietal cortex). Based on our results we hypothesize that in the detection of rare events, during visual information processing, rSTS is involved within neuronal networks related to attention, but also at later stages of stimuli processing.

References

  • Ardekani, B. A., Choi, S. J., Hossein-Zadeh, G. A., Porjesz, B., Tanabe, J. L., Lim, K. O., … Begleiter, H. (2002). Functional magnetic resonance imaging of brain activity in the visual oddball task. Brain Research: Cognitive Brain Research, 14, 347–356. First citation in articleCrossrefGoogle Scholar

  • Beauchamp, M. S., Lee, K. E., Argall, B. D. & Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41, 809–823. First citation in articleCrossrefGoogle Scholar

  • Blatt, G. J., Pandya, D. N. & Rosene, D. L. (2003). Parcellation of cortical afferents to three distinct sectors in the parahippocampal gyrus of the rhesus monkey: An anatomical and neurophysiological study. The Journal of Comparative Neurology, 466, 161–179. First citation in articleCrossrefGoogle Scholar

  • Bledowski, C., Prvulovic, D., Goebel, R., Zanella, F. E. & Linden, D. E. (2004). Attentional systems in target and distractor processing: A combined ERP and fMRI study. Neuroimage, 22, 530–540. First citation in articleCrossrefGoogle Scholar

  • Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R. & Linden, D. E. (2004). Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. The Journal of Neuroscience, 24, 9353–9360. First citation in articleCrossrefGoogle Scholar

  • Brázdil, M., Babiloni, C., Roman, R., Daniel, P., Bares, M., Rektor, I., … Vecchio, F. (2009). Directional functional coupling of cerebral rhythms between anterior cingulate and dorsolateral prefrontal areas during rare stimuli: A directed transfer function analysis of human depth EEG signal. Human Brain Mapping, 30, 138–146. First citation in articleCrossrefGoogle Scholar

  • Brázdil, M., Dobsík, M., Mikl, M., Hlustík, P., Daniel, P., Pazourková, M., … Rektor, I. (2005). Combined event-related fMRI and intracerebral ERP study of an auditory oddball task. NeuroImage, 26, 285–293. First citation in articleCrossrefGoogle Scholar

  • Brázdil, M., Mikl, M., Marecek, R., Krupa, P. & Rektor, I. (2007). Effective connectivity in target stimulus processing: A dynamic causal modeling study of visual oddball task. NeuroImage, 35, 827–835. First citation in articleCrossrefGoogle Scholar

  • Brázdil, M., Roman, R., Daniel, P. & Rektor, I. (2003). Intracerebral somatosensory event-related potentials: Effect of response type (button pressing versus mental counting) on P3-like potentials within the human brain. Clinical Neurophysiology, 114, 1489–1496. First citation in articleCrossrefGoogle Scholar

  • Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. (2000). Responses to rare visual target and distractor stimuli using event-related fMRI. Journal of Neurophysiology, 83, 3133–3139. First citation in articleCrossrefGoogle Scholar

  • Corbetta, M., Patel, G. & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306–324. doi: 10.1016/j.neuron.2008.04.017 First citation in articleCrossrefGoogle Scholar

  • Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews: Neuroscience, 3, 201–215. First citation in articleCrossrefGoogle Scholar

  • Czisch, M., Wehrle, R., Stiegler, A., Peters, H., Andrade, K., Holsboer, F. & Sämann, P. G. (2009). Acoustic oddball during NREM sleep: A combined EEG/fMRI study. PLoS One, 4, e6749. doi: 10.1371/journal.pone.0006749 First citation in articleCrossrefGoogle Scholar

  • Decety, J. & Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. The Neuroscientist, 13, 580–593. First citation in articleCrossrefGoogle Scholar

  • Donchin, E., Ritter, W. & McCallum, C. (1978). Cognitive psychophysiology: The endogenous components of the ERP. In P. CallawayP. TuetingS. KoslowEds., Brain-event related potentials in man (pp. 349–411). New York, NY: Academic Press. First citation in articleGoogle Scholar

  • Elliott, R. & Dolan, R. J. (1998). Activation of different anterior cingulate foci in association with hypothesis testing and response selection. NeuroImage, 8, 17–29. First citation in articleCrossrefGoogle Scholar

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I. & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26, 471–479. First citation in articleCrossrefGoogle Scholar

  • Friedman, D., Cycowicz, Y. M. & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373. First citation in articleCrossrefGoogle Scholar

  • Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E. & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229. First citation in articleCrossrefGoogle Scholar

  • Gitelman, D. R., Penny, W. D., Ashburner, J. & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: The importance of hemodynamic deconvolution. NeuroImage, 19, 200–207. First citation in articleCrossrefGoogle Scholar

  • Habas, C., Guillevin, R. & Abanou, A. (2011). Functional connectivity of the superior human temporal sulcus in the brain resting state at 3T. Neuroradiology, 53, 129–140. First citation in articleCrossrefGoogle Scholar

  • Halgren, E., Marinkovic, K. & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106, 156–164. First citation in articleCrossrefGoogle Scholar

  • Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4, 223–233. First citation in articleCrossrefGoogle Scholar

  • Hein, G. & Knight, R. T. (2008). Superior temporal sulcus – It’s my area: Or is it? Journal of Cognitive Neuroscience, 20, 2125–2136. doi: 10.1162/jocn.2008.20148 First citation in articleCrossrefGoogle Scholar

  • Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291. First citation in articleCrossrefGoogle Scholar

  • Hopfinger, J. B., Woldorff, M. G., Fletcher, E. M. & Mangun, G. R. (2001). Dissociating top-down attentional control from selective perception and action. Neuropsychologia, 39, 1277–1291. First citation in articleCrossrefGoogle Scholar

  • Ishai, A., Schmidt, C. F. & Boesiger, P. (2005). Face perception is mediated by a distributed cortical network. Brain Research Bulletin, 67, 87–93. First citation in articleCrossrefGoogle Scholar

  • Jabbi, M., Kohn, P. D., Nash, T., Ianni, A., Coutlee, C., Holroyd, T., … Berman, K. F. (2015). Convergent BOLD and beta-band activity in superior temporal sulcus and frontolimbic circuitry underpins human emotion cognition. Cerebral Cortex, 25, 1878–1888. First citation in articleCrossrefGoogle Scholar

  • Kim, H. (2014). Involvement of the dorsal and ventral attention networks in oddball stimulus processing: A meta-analysis. Human Brain Mapping, 35, 2265–2284. doi: 101002/hbm22326 First citation in articleCrossrefGoogle Scholar

  • Kiehl, K. A., Laurens, K. R., Duty, T. L., Forster, B. B. & Liddle, P. F. (2001). Neural sources involved in auditory target detection and novelty processing: An event-related fMRI study. Psychophysiology, 38, 133–142. First citation in articleCrossrefGoogle Scholar

  • Kiehl, K. A., Stevens, M. C., Laurens, K. R., Pearlson, G., Calhoun, V. D. & Liddle, P. F. (2005). An adaptive reflexive processing model of neurocognitive function: Supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. NeuroImage, 25, 889–915. First citation in articleCrossrefGoogle Scholar

  • Kunishio, K. & Haber, S. N. (1994). Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. The Journal of Comparative Neurology, 350, 337–356. First citation in articleCrossrefGoogle Scholar

  • Lee, D. (2013). Decision making: From neuroscience to psychiatry. Neuron, 78, 233–248. doi: 10.1016/j.neuron.2013.04.008 First citation in articleCrossrefGoogle Scholar

  • Linden, D. E. J., Prvulovic, D., Formisano, E., Vollinger, M., Zanella, F. E., Goebel, R. & Dierks, T. (1999). The functional neuroanatomy of target detection: An fMRI study of visual and auditory oddball tasks. Cerebral Cortex, 9, 815–823. First citation in articleCrossrefGoogle Scholar

  • Lund, T. E., Madsen, K. H., Sidaros, K., Luo, W. L. & Nichols, T. E. (2006). Non-white noise in fMRI: Does modelling have an impact? NeuroImage, 29, 54–66. First citation in articleCrossrefGoogle Scholar

  • Materna, S., Dicke, P. W. & Thier, P. (2008). The posterior superior temporal sulcus is involved in social communication not specific for the eyes. Neuropsychologia, 46, 2759–2765. doi: 10.1016/j.neuropsychologia.2008.05.016 First citation in articleCrossrefGoogle Scholar

  • McCarthy, G., Luby, M., Gore, J. & Goldman-Rakic, P. (1997). Infrequent events transiently activate human prefrontal and parietal cortex as measured by functional MRI. Journal of Neurophysiology, 77, 1630–1634. First citation in articleCrossrefGoogle Scholar

  • Melcher, T. & Gruber, O. (2006). Oddball and incongruity effects during Stroop task performance: A comparative fMRI study on selective attention. Brain Research, 1121, 136–149. First citation in articleCrossrefGoogle Scholar

  • Menon, V., Ford, J. M., Lim, K. O., Glover, G. H. & Pfefferbaum, A. (1997). Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. Neuroreport, 8, 3029–3037. First citation in articleCrossrefGoogle Scholar

  • Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597–613. First citation in articleCrossrefGoogle Scholar

  • Mesulam, M. M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 354, 1325–1346. First citation in articleCrossrefGoogle Scholar

  • Miller, B. T. & D’Esposito, M. (2005). Searching for “the Top” in top-down control. Neuron, 48, 535–538. First citation in articleCrossrefGoogle Scholar

  • Mulert, C., Jager, L., Schmitt, R., Bussfeld, P., Pogarell, O., Moller, H. J., … Hegerl, U. (2004). Integration of fMRI and simultaneous EEG: Towards a comprehensive understanding of localization and time-course of brain activity in target detection. NeuroImage, 22, 83–94. First citation in articleCrossrefGoogle Scholar

  • Nardo, D., Santangelo, V. & Macaluso, E. (2011). Stimulus-driven orienting of visuo-spatial attention in complex dynamic environments. Neuron, 69, 1015–1028. doi: 10.1016/j.neuron.2011.02.020 First citation in articleCrossrefGoogle Scholar

  • Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H. C. & Keidel, M. (2005). On the neural basis of focused and divided attention. Brain Research: Cognitive Brain Research, 25, 760–776. First citation in articleCrossrefGoogle Scholar

  • Ngan, E. T. C., Vouloumanos, A., Cairo, T. A., Laurens, K. R., Bates, A. T., Anderson, C. M., … Liddle, P. F. (2003). Abnormal processing of speech during oddball target detection in schizophrenia. NeuroImage, 20, 889–897. First citation in articleCrossrefGoogle Scholar

  • Norman, D. A. & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. DavidsonG. E. SchwartzD. ShapiroEds., Consciousness and self-regulation (4, pp. 1–18). New York, NY: Plenum. First citation in articleGoogle Scholar

  • Opitz, B., Mecklinger, A., Friederici, A. D. & von Cramon, D. Y. (1999). The functional neuroanatomy of novelty processing: Integrating ERP and fMRI results. Cerebral Cortex, 9, 379–391. First citation in articleCrossrefGoogle Scholar

  • Paller, K. A., Kutas, M. & Mayes, A. R. (1987). Neural correlates of encoding in an incidental learning paradigm. Electroencephalography and Clinical Neurophysiology, 67, 360–371. First citation in articleCrossrefGoogle Scholar

  • Pelphrey, K. A. & Carter, E. J. (2008). Brain mechanisms for social perception lessons from autism and typical development. Annals of the New York Academy of Sciences, 1145, 283–299. doi: 10.1196/annals.1416.007 First citation in articleCrossrefGoogle Scholar

  • Petit, L., Simon, G., Joliot, M., Andersson, F., Bertin, T., Zago, L., … Tzourio-Mazoyer, N. (2007). Right hemisphere dominance for auditory attention and its modulation by eye position: An event related fMRI study. Restorative Neurology and Neuroscience, 25, 211–225. First citation in articleGoogle Scholar

  • Polich, J. (2007). Updating p300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. First citation in articleCrossrefGoogle Scholar

  • Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin, 89, 506–540. First citation in articleCrossrefGoogle Scholar

  • Rehme, A. K., Eickhoff, S. B. & Grefkes, C. (2013). State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage, 67, 237–246. doi: 10.1016/j.neuroimage.2012.11.027 First citation in articleCrossrefGoogle Scholar

  • Seltzer, B. & Pandya, D. N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Research, 149, 1–24. First citation in articleCrossrefGoogle Scholar

  • Sestieri, C., Shulman, G. L. & Corbetta, M. (2012). Orienting to the environment: Separate contributions of dorsal and ventral frontoparietal attention networks. In G. R. MangunEd., The neuroscience of attention: Attentional control and selection (pp. 100–130). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Shulman, G. L., Pope, D. L. W., Astafiev, S. V., McAvoy, M. P., Snyder, A. Z. & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. The Journal of Neuroscience, 30, 3640–3651. doi: 10.1523/JNEUROSCI.4085-09.2010 First citation in articleCrossrefGoogle Scholar

  • Squires, N. K., Squires, K. C. & Hillyard, S. A. (1975). Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalography and Clinical Neurophysiology, 38, 387–401. First citation in articleCrossrefGoogle Scholar

  • Stevens, M. C., Calhoun, V. D. & Kiehl, K. A. (2005). fMRI in an oddball task: Effects of target-to-target interval. Psychophysiology, 42, 636–642. First citation in articleCrossrefGoogle Scholar

  • Stevens, M. C., Pearlson, G. D. & Kiehl, K. A. (2007). An fMRI auditory oddball study of combined-subtype attention deficit hyperactivity disorder. The American Journal of Psychiatry, 164, 1737–1749. First citation in articleCrossrefGoogle Scholar

  • Sutton, S., Braren, M., Zubin, J. & John, E. (1965). Evoked potential correlates of stimulus uncertainty. Science, 150, 1187–1188. First citation in articleCrossrefGoogle Scholar

  • Thompson, J. C., Clarke, M., Stewart, T. & Puce, A. (2005). Configural processing of biological motion in human superior temporal sulcus. The Journal of Neuroscience, 25, 9059–9066. First citation in articleCrossrefGoogle Scholar

  • Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of the P3. The Behavioral and Brain Sciences, 11, 343–427. First citation in articleCrossrefGoogle Scholar

  • Verleger, R. (1997). On the utility of P3 latency as an index of mental chronometry. Psychophysiology, 34, 131–156. First citation in articleCrossrefGoogle Scholar

  • Verleger, R., Jaskowski, P. & Wascher, E. (2005). Evidence for an integrative role of P3b in linking reaction to perception. Journal of Psychophysiology, 19, 165–181. First citation in articleLinkGoogle Scholar

  • Vogt, B. A. & Pandya, D. N. (1987). Cingulate cortex of the rhesus monkey: II Cortical afferents. The Journal of Comparative Neurology, 262, 271–289. First citation in articleCrossrefGoogle Scholar

  • Yomogida, Y., Sugiura, M., Sassa, Y., Wakusawa, K., Sekiguchi, A., Fukushima, A., … Kawashima, R. (2010). The neural basis of agency: An fMRI study. NeuroImage, 50, 198–207. doi: 10.1016/j.neuroimage.2009.12.054 First citation in articleCrossrefGoogle Scholar

  • Zelinková, J., Shaw, D. J., Mareček, R., Mikl, M., Urbánek, T., Peterková, L., … Brázdil, M. (2013). Superior temporal sulcus and social cognition in dangerous drivers. NeuroImage, 83, 1024–1030. doi: 10.1016/j.neuroimage.2013.07.063 First citation in articleCrossrefGoogle Scholar