Skip to main content
Article

The Medial Frontal Cortex Mediates Self-Other Discrimination in the Joint Simon Task

A tDCS Study

Published Online:https://doi.org/10.1027/0269-8803/a000158

Abstract. Interacting with other individuals confronts cognitive control systems with the problem of how to distinguish between self-generated (internally triggered) and other-generated (externally triggered) action events. Recent neuroscience studies identified two core brain regions, the anterior medial frontal cortex (aMFC) and the right temporo-parietal junction (rTPJ), to be potentially involved in resolving this problem either by enhancing self-generated versus other-generated event representations (via aMFC) and/or by inhibiting event representations that are externally triggered (via rTPJ). Using transcranial direct current stimulation (tDCS), we investigated the role of the aMFC and the rTPJ for the online control of self-generated versus other-generated event representations in a joint Simon task. In two experimental sessions, participants received anodal, cathodal, or sham tDCS (1 mA intensity applied for 20 min), while performing an auditory joint Simon task. In addition to a general performance enhancement during cathodal (inhibitory) and anodal (excitatory) stimulation with increased practice, we found a significantly increased joint Simon effect (JSE) during cathodal stimulation of the aMFC (Experiment 1), as compared to sham stimulation. No modulation of the JSE was found during stimulation of the rTPJ (Experiment 2). By enhancing self-generated event representations the aMFC seems to be crucially involved in resolving the self-other discrimination problem in the joint Simon task.

References

  • Abraham, A., Werning, M., Rakoczy, H., von Cramon, D. Y. & Schubotz, R. I. (2008). Minds, persons, and space: An fMRI investigation into the relational complexity of higher-order intentionality. Consciousness and Cognition, 17, 438–450. First citation in articleCrossrefGoogle Scholar

  • Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews, 4, 165–178. First citation in articleCrossrefGoogle Scholar

  • Amodio, D. M. & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277. First citation in articleCrossrefGoogle Scholar

  • Ansorge, U. & Wühr, P. (2004). A response-discrimination account of the Simon effect. Journal of Experimental Psychology: Human, Perception and Performance, 30, 365–377. First citation in articleCrossrefGoogle Scholar

  • Antal, A., Kincses, T. Z., Nitsche, M. A., Bartfai, O. & Paulus, W. (2004). Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Investigative Ophthalmology & Visual Science, 45, 702–707. First citation in articleCrossrefGoogle Scholar

  • Antal, A., Nitsche, M. A., Kincses, T. Z., Kruse, W., Hoffmann, K. P. & Paulus, W. (2004). Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor extrastriate visual areas in humans. European Journal of Neuroscience, 19, 2888–2892. First citation in articleCrossrefGoogle Scholar

  • Antal, A., Nitsche, M. A., Kruse, W., Kincses, T. Z., Hoffmann, K. P. & Paulus, W. (2004). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience, 16, 521–527. First citation in articleCrossrefGoogle Scholar

  • Atmaca, S., Sebanz, N. & Knoblich, G. (2011). The joint flanker effect: Sharing tasks with real and imagined co-actors. Experimental Brain Research, 21, 371–385. First citation in articleCrossrefGoogle Scholar

  • Atmaca, S., Sebanz, N., Prinz, W. & Knoblich, G. (2008). Action co-representation: The joint SNARC effect. Social Neuroscience, 3, 410–420. First citation in articleCrossrefGoogle Scholar

  • Been, G., Ngo, T. T., Miller, S. M. & Fitzgerald, P. B. (2007). The use of tDCS and CVS as methods of non-invasive brain stimulation. Brain Research Reviews, 56, 346–361. First citation in articleCrossrefGoogle Scholar

  • Bikson, M., Datta, A. & Elwassif, M. (2009). Establishing safety limits for transcranial direct current stimulation. Clinical Neurophysiology, 120, 1033–1034. First citation in articleCrossrefGoogle Scholar

  • Boggio, P. S., Zaghi, S., Villani, A. B., Fecteau, S., Pascual-Leone, A. & Fregni, F. (2010). Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug and Alcohol Dependence, 112, 220–225. First citation in articleCrossrefGoogle Scholar

  • Botvinick, M., Braver, T., Barch, D., Carter, C. & Cohen, J. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. First citation in articleCrossrefGoogle Scholar

  • Botvinick, M., Cohen, J. D. & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546. First citation in articleCrossrefGoogle Scholar

  • Brass, M., Bekkering, H., Wohlschläger, A. & Prinz, W. (2000). Compatibility between observed and executed finger movements: Comparing symbolic, spatial, and imitative cues. Brain Cognition, 44, 124–143. First citation in articleCrossrefGoogle Scholar

  • Brass, M., Derrfuss, J. & von Cramon, D. Y. (2005). The inhibition of imitative and overlearned responses: A functional double dissociation. Neuropsychologia, 43, 89–98. First citation in articleCrossrefGoogle Scholar

  • Brass, M. & Heyes, C. (2005). Imitation: Is cognitive neuroscience solving the correspondence problem? TRENDS in Cognitive Science, 9, 489–495. First citation in articleCrossrefGoogle Scholar

  • Brass, M., Ruby, P. & Spengler, S. (2009). Inhibition of imitative behavior and social cognition. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 364, 2359–2367. First citation in articleCrossrefGoogle Scholar

  • Civai, C., Miniussi, C. & Rumiati, R. I. (2014). Medial prefrontal cortex reacts to unfairness if this damages the self: A tDCS study. Social Cognitive and Affective Neuroscience, 10, 1054–1060. doi: 10.1093/scan/nsu154 First citation in articleCrossrefGoogle Scholar

  • Colzato, L. S., van den Wildenberg, W. & Hommel, B. (2013). Increasing self-other integration through divergent thinking. Psychonomic Bulletin & Review, 20, 1011–1016. First citation in articleCrossrefGoogle Scholar

  • Cook, J. L. (2014). Task-relevance dependent gradients in medial prefrontal and temporoparietal cortices suggest solutions to paradoxes concerning self/other control. Neuroscience and Biobehavioral Reviews, 42, 298–302. First citation in articleCrossrefGoogle Scholar

  • Datta, A., Elwassif, M., Battaglia, F. & Bikson, M. (2008). Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. Journal of Neural Engineering, 5, 163–174. First citation in articleCrossrefGoogle Scholar

  • Decety, J. & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079, 4–14. First citation in articleCrossrefGoogle Scholar

  • Decety, J. & Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. Neuroscientist, 13, 580–593. First citation in articleCrossrefGoogle Scholar

  • Decety, J. & Sommerville, J. A. (2003). Shared representations between self and other: A social cognitive neuroscience view. Trends in Cognitive Science, 7, 527–533. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Bossini, S. & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396. First citation in articleCrossrefGoogle Scholar

  • De Jong, R., Liang, C. C. & Lauber, E. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human, Perception and Performance, 20, 731–750. First citation in articleCrossrefGoogle Scholar

  • de la Asuncion, J., Bervoets, C., Morrens, M., Sabbe, B. & de Bruijn, E. R. A. (2015). EEG correlates of impaired self-other integration during joint-task performance in schizophrenia. Social Cognitive and Affective Neuroscience, 10, 1365–1372. First citation in articleCrossrefGoogle Scholar

  • Dittrich, K., Dolk, T., Rothe-Wulf, A., Klauer, K. C. & Prinz, W. (2013). Keys and seats: Spatial response coding underlying the joint spatial compatibility effect. Attention, Perception, & Psychophysics, 75, 1725–1736. First citation in articleCrossrefGoogle Scholar

  • Dittrich, K., Rothe, A. & Klauer, K. C. (2012). Increased spatial salience in the social Simon task: A response-coding account of spatial compatibility effects. Attention, Perception, & Psychophysics, 74, 911–929. First citation in articleCrossrefGoogle Scholar

  • Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., Prinz, W. & Liepelt, R. (2011). How “social” is the social Simon effect? Frontiers in Psychology, 2, 84. doi: 10.3389/fpsyg.2011.00084 First citation in articleCrossrefGoogle Scholar

  • Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., Prinz, W. & Liepelt, R. (2014). The joint Simon effect: A review and theoretical integration. Frontiers in Psychology, 5, 974. doi: 10.3389/fpsyg.2014.00974 First citation in articleCrossrefGoogle Scholar

  • Dolk, T., Hommel, B., Prinz, W. & Liepelt, R. (2013). The (not so) social Simon effect: A referential coding account. Journal of Experimental Psychology: Human, Perception and Performance, 39, 1248–1260. First citation in articleCrossrefGoogle Scholar

  • Dolk, T., Hommel, B., Prinz, W. & Liepelt, R. (2014). The joint flanker effect: Less social than previously thought. Psychonomic Bulletin & Review, 21, 1224–1230. First citation in articleCrossrefGoogle Scholar

  • Dolk, T., Liepelt, R., Villringer, A., Prinz, W. & Ragert, P. (2012). Morphometric gray matter differences of the medial frontal cortex influence the social Simon effect. NeuroImage, 61, 1249–1254. First citation in articleCrossrefGoogle Scholar

  • Doneva, S. P. & Cole, G. G. (2014). The Role of Attention in a Joint-Action Effect. PLoS One, 9, e91336. First citation in articleGoogle Scholar

  • Eriksen, B. A. & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. First citation in articleCrossrefGoogle Scholar

  • Faria, P., Hallett, M. & Miranda, P. C. (2012). A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. Journal of Neural Engineering, 8, 066017. First citation in articleGoogle Scholar

  • Farrer, C. & Frith, C. D. (2002). Experiencing oneself vs another person as being the cause of an action: The neural correlates of the experience of agency. NeuroImage, 15, 596–603. First citation in articleCrossrefGoogle Scholar

  • Forstmann, B. U., Wolfensteller, U., Derfuss, J., Neumann, J., Brass, M., Ridderinkhof, K. R. & von Cramon, D. Y. (2008). When the choice is ours: Context and agency modulate the neural bases of decision-making. PLoS One, 3, e1899. First citation in articleGoogle Scholar

  • Frith, U. & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358, 459–473. First citation in articleCrossrefGoogle Scholar

  • Gandiga, P. C., Hummel, F. C. & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117, 845–850. First citation in articleCrossrefGoogle Scholar

  • Guagnano, D., Rusconi, E. & Umiltà, C. A. (2010). Sharing a task or sharing space? On the effect of the confederate in action coding in a detection task. Cognition, 114, 348–355. First citation in articleCrossrefGoogle Scholar

  • Harris, L. T., McClure, S., Van den Bos, W., Cohen, J. D. & Fiske, S. T. (2007). Regions of MPFC differentially tuned to social and nonsocial affective stimuli. Cognitive and Behavioral Neuroscience, 7, 309–316. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (1993a). The role of attention for the Simon effect. Psychological Research, 55, 208–222. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (1993b). The relationship between stimulus processing and response selection in the Simon task: Evidence for a temporal overlap. Psychological Research, 55, 280–290. First citation in articleCrossrefGoogle Scholar

  • Hommel, B. (1996). The cognitive representation of action: Automatic integration of perceived action effects. Psychological Research, 59, 176–186. First citation in articleCrossrefGoogle Scholar

  • Hommel, B., Colzato, L. S. & van den Wildenberg, W. P. M. (2009). How social are task representations? Psychological Science, 20, 794–798. First citation in articleCrossrefGoogle Scholar

  • Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937. First citation in articleCrossrefGoogle Scholar

  • Jacobson, L., Koslowsky, M. & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216, 1–10. First citation in articleCrossrefGoogle Scholar

  • James, W. (1890). The principles of psychology (Vol. 2), New York, NY: Dover Publications. First citation in articleCrossrefGoogle Scholar

  • Knoblich, G. & Sebanz, N. (2006). The social nature of perception and action. Current Directions in Psychological Science, 15, 99–104. First citation in articleCrossrefGoogle Scholar

  • Kornblum, S., Hasbroucq, T. & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility – A model and taxonomy. Psychological Review, 97, 252–270. First citation in articleCrossrefGoogle Scholar

  • Kuo, M. F. & Nitsche, M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clinical EEG and Neuroscience, 43, 192–199. First citation in articleCrossrefGoogle Scholar

  • Levasseur-Moreau, J., Brunelin, J. & Fecteau, S. (2013). Noninvasive brain stimulation can induce paradoxical facilitation. Are these neuroenhancements transferable and meaningful to security services? Frontiers in Human Neuroscience, 7, 449. First citation in articleCrossrefGoogle Scholar

  • Liebetanz, D., Koch, R., Mayenfels, S., Konig, F., Paulus, W. & Nitsche, M. A. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Clinical Neurophysiology, 120, 1161–1167. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R. (2014). Interacting hands: The role of attention for the joint Simon effect. Frontiers in Psychology, 5, 1462. doi: 10.3389/fpsyg.2014.01462. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R. & Fischer, R. (in press). Task demands determine hand posture bias on conflict processing in a Simon task. Psychonomic Bulletin & Review. First citation in articleGoogle Scholar

  • Liepelt, R. & Prinz, W. (2011). How two share two tasks: Evidence of a social psychological refractory period effect. Experimental Brain Research, 211, 387–396. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R., Schneider, J. C., Aichert, D. S., Wöstmann, N., Dehning, S., Möller, H. J., … Ettinger, U. (2012). Action blind: Disturbed self-other integration in schizophrenia. Neuropsychologia, 50, 3775–3780. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R., Stenzel, A. & Lappe, M. (2012). Specifying social cognitive processes with a social dual-task paradigm. Frontiers in Human Neuroscience, 6, 86. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R., von Cramon, D. Y. & Brass, M. (2008). What is matched in direct matching? Intention attribution modulates motor priming. Journal of Experimental Psychology: Human, Perception and Performance, 34, 578–591. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R., Wenke, D. & Fischer, R. (2013). Effects of feature integration in a hands-crossed version of the social Simon paradigm. Psychological Research, 77, 240–248. First citation in articleCrossrefGoogle Scholar

  • Liepelt, R., Wenke, D., Fischer, R. & Prinz, W. (2011). Trial-to-trial sequential dependencies in a social and non-social Simon task. Psychological Research, 75, 366–375. First citation in articleCrossrefGoogle Scholar

  • Marshall, L., Molle, M., Siebner, H. & Born, J. (2005). Bifrontal transcranial direct current stimulation slows reaction time in a working memory task. BMC Neuroscience, 6, 23. doi: 10.1186/1471-2202-6-23 First citation in articleCrossrefGoogle Scholar

  • Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null hypothesis significance testing. Behavior Research Methods, 43, 679–690. First citation in articleCrossrefGoogle Scholar

  • Memelink, J. & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research, 77, 249–259. First citation in articleCrossrefGoogle Scholar

  • Mitchell, J. P. (2008). Activity in right temporo-parietal junction is not selective for theory-of-mind. Cerebral Cortex, 18, 262–271. First citation in articleCrossrefGoogle Scholar

  • Moll, J., Eslinger, P. J. & de Oliveira-Souza, R. (2001). Frontopolar and anterior temporal cortex activation in a moral judgment task. Arqivos de Neuro-Psiquiatria, 59, 657–664. First citation in articleCrossrefGoogle Scholar

  • Monti, A., Cogiamanian, F., Marceglia, S., Ferrucci, R., Mrakic-Sposta, S., Vergari, M., … Priori, A. (2008). Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology & Neurosurgery Psychiatry, 79, 451–453. First citation in articleCrossrefGoogle Scholar

  • Newman-Norlund, R. D., Bosga, J., Meulenbroek, R. G. J. & Bekkering, H. (2008). Anatomical substrates of cooperative joint-action in a continuous motor task: Virtual lifting and balancing. NeuroImage, 41, 169–177. First citation in articleCrossrefGoogle Scholar

  • Nicoletti, R. & Umiltà, C. (1989). Spitting visual space with attention. Journal of Experimental Psychology: Human Perception and Performance, 15, 164–169. First citation in articleCrossrefGoogle Scholar

  • Nicolle, A., Klein-Flügge, M. C., Hunt, L. T., Vlaev, I., Dolan, R. J. & Behrens, T. E. J. (2012). An agent independent axis for executed and modeled choice in medial prefrontal cortex. Neuron, 75, 1114–1121. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206–223. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., … Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology, 97, 3109–3117. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F. & Paulus, W. (2003). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neurophysiology, 114, 2220–2222. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C. & Paulus, W. (2003). Level of activation of cathodal DC polarization induced inhibition of the human motor cortex. Clinical Neurophysiology, 114, 600–604. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A. & Paulus, W. (2000). Excitability changes in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527, 633–639. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A. & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57, 1899–18901. First citation in articleCrossrefGoogle Scholar

  • Northoff, G. & Bermpohl, F. (2004). Cortical midline structures and the self. Trends in Cognitive Sciences, 8, 102–107. First citation in articleCrossrefGoogle Scholar

  • Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human, Perception and Performance, 10, 358–377. First citation in articleCrossrefGoogle Scholar

  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244. First citation in articleCrossrefGoogle Scholar

  • Paulus, W. (2011). Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21, 602–617. First citation in articleCrossrefGoogle Scholar

  • Poreisz, C., Boros, K., Antal, A. & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72, 208–214. First citation in articleCrossrefGoogle Scholar

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154. First citation in articleCrossrefGoogle Scholar

  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–196. First citation in articleCrossrefGoogle Scholar

  • Röder, B., Kusmierek, A., Spence, C. & Schicke, T. (2007). Developmental vision determines the reference frame for the multisensory control of action. Proceedings of the National Academy of Sciences, 104, 4753–4758. First citation in articleCrossrefGoogle Scholar

  • Ruby, P. & Decety, J. (2003). What you believe versus what you think they believe: A neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 17, 2475–2480. First citation in articleCrossrefGoogle Scholar

  • Ruby, P. & Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16, 988–999. First citation in articleCrossrefGoogle Scholar

  • Santiesteban, I., Banissy, M. J., Catmur, C. & Bird, G. (2012). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22, 2274–2277. First citation in articleCrossrefGoogle Scholar

  • Saxe, R., Carey, S. & Kanwisher, N. (2004). Understanding other minds: Linking developmental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124. First citation in articleCrossrefGoogle Scholar

  • Saxe, R. & Kanwisher, N. (2003). People thinking about thinking people: The role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19, 1835–1842. First citation in articleCrossrefGoogle Scholar

  • Schilbach, L., Timmermans, B., Reddy, V., Bente, G., Costall, A., Schlicht, T. & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36, 383–414. First citation in articleGoogle Scholar

  • Schuwerk, T., Döhnel, K., Sodian, B., Keck, I. R., Rupprecht, R. & Sommer, M. (2014). Functional activity and effective connectivity of the posterior medial prefrontal cortex during processing of incongruent mental states. Human Brain Mapping, 35, 2950–2965. First citation in articleCrossrefGoogle Scholar

  • Sebanz, N., Bekkering, H. & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10, 70–76. First citation in articleCrossrefGoogle Scholar

  • Sebanz, N. & Knoblich, G. (2009). Prediction in joint action: What, when, and where. Topics in Cognitive Science, 1, 353–367. First citation in articleCrossrefGoogle Scholar

  • Sebanz, N., Knoblich, G. & Prinz, W. (2003). Representing other’s actions: Just like one’s own? Cognition, 88, B11–B21. First citation in articleGoogle Scholar

  • Sebanz, N., Knoblich, G. & Prinz, W. (2005). How two share a task: Corepresenting stimulus-response mappings. Journal of Experimental Psychology: Human Perception and Performance, 31, 1234–1246. First citation in articleCrossrefGoogle Scholar

  • Sebanz, N., Knoblich, G., Prinz, W. & Wascher, E. (2006). Twin peaks: An ERP study to action planning and control in co-acting individuals. Journal of Cognitive Neuroscience, 18, 859–870. First citation in articleCrossrefGoogle Scholar

  • Sebanz, N., Rebbechi, D., Knoblich, G., Prinz, W. & Frith, C. D. (2007). Is it really my turn? An event-related fMRI study of task sharing. Social Neuroscience, 2, 81–95. First citation in articleCrossrefGoogle Scholar

  • Sellaro, R., Dolk, T., Colzato, L., Liepelt, R. & Hommel, B. (2015). Referential coding does not rely on location features: Evidence for a non-spatial joint Simon effect. Journal of Experimental Psychology: Human Perception and Performance, 41, 186–195. First citation in articleCrossrefGoogle Scholar

  • Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. ProctorT. G. ReeveEds., Stimulus-response compatibility: An integrated perspective. Advances in Psychology (Vol. 65, pp. 31–86). Amsterdam, The Netherlands: North-Holland. First citation in articleGoogle Scholar

  • Simon, J. A. & Rudell, A. P. (1967). Auditory S-R compatibility: The effect of an irrelevant cue on information processing. Journal of Applied Psychology, 51, 300–304. First citation in articleCrossrefGoogle Scholar

  • Spengler, S., von Cramon, D. Y. & Brass, M. (2009a). Control of shared representations relies on key processes involved in mental state attribution. Human Brain Mapping, 30, 3704–3718. First citation in articleCrossrefGoogle Scholar

  • Spengler, S., von Cramon, D. Y. & Brass, M. (2009b). Was it me or was it you? How the sense of agency originates from ideomotor learning revealed by fMRI. NeuroImage, 46, 290–298. First citation in articleCrossrefGoogle Scholar

  • Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M. & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49, 800–804. First citation in articleCrossrefGoogle Scholar

  • Stenzel, A., Dolk, T., Colzato, L. S., Sellaro, R., Hommel, B. & Liepelt, R. (2014). The joint Simon effect depends on perceived agency, but not intentionality, of the alternative action. Frontiers in Human Neuroscience, 8, 595. First citation in articleCrossrefGoogle Scholar

  • Stock, A. & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188. First citation in articleCrossrefGoogle Scholar

  • Tsai, C. C., Kuo, W. J., Hung, D. L. & Tzeng, O. J. (2008). Action co-representation is tuned to other humans. Journal of Cognitive Neuroscience, 20, 2015–2024. First citation in articleCrossrefGoogle Scholar

  • Tsai, C. C., Kuo, W. J., Jing, J. T., Hung, D. L. & Tzeng, O. J. L. (2006). A common coding framework in self-other interaction: Evidence from joint action task. Experimental Brain Research, 175, 353–362. First citation in articleCrossrefGoogle Scholar

  • Tsakiris, M., Costantini, M. & Haggard, P. (2008). The role of the right temporo-parietal junction in maintaining a coherent sense of one’s body. Neuropsychologia, 46, 3014–3018. First citation in articleCrossrefGoogle Scholar

  • Vlainic, E., Liepelt, R., Colzato, L. S., Prinz, W. & Hommel, B. (2010). The virtual co-actor: The social Simon effect does not rely on online feedback from the other. Frontiers in Psychology, 1, 208. doi: 10.3389/fpsyg.2010.00208 First citation in articleCrossrefGoogle Scholar

  • Volz, K. G., Schooler, L. J., Schubotz, R. I., Raab, M., Gigerenzer, G. & von Cramon, D. Y. (2006). Why you think Milan is larger than Modena: Neural correlates of the recognition heuristic. Journal of Cognitive Neuroscience, 18, 1924–1936. First citation in articleCrossrefGoogle Scholar

  • Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804. First citation in articleCrossrefGoogle Scholar

  • Zysset, S., Huber, O., Ferstl, E. & von Cramon, D. Y. (2002). The anterior frontomedian cortex and evaluative judgment: An fMRI study. NeuroImage, 15, 983–991. First citation in articleCrossrefGoogle Scholar

  • Zysset, S., Huber, O., Samson, A., Ferstl, E. C. & von Cramon, D. Y. (2003). Functional specialization within the anterior medial prefrontal cortex: A functional magnetic resonance imaging study with human subjects. Neuroscience Letters, 335, 183–186. First citation in articleCrossrefGoogle Scholar