Skip to main content
Article

Psychophysiological Assessment of Social Stress in Natural and Laboratory Situations

Using the Experience Sampling Method and Additional Heart Rate Measures

Published Online:https://doi.org/10.1027/0269-8803/a000170

Abstract. Experience sampling and psychophysiological ambulant assessment methods were employed to compare reactions to social stress using a laboratory stressor (The Trier Social Stress Test [TSST]) or a corresponding real-life condition (seminar presentation). Stress reactions were assessed by self-report as well as additional heart rate (AHR, i.e., heart rate increases corrected for physical activity and initial values) and were compared to a control condition in each group. Twenty-five participants gave a talk in a university seminar course and twenty-two participants took part in the TSST. The TSST elicited a greater overall physiological stress reaction as compared to the seminar presentation. However, analyses of dynamic AHR levels revealed that the groups of speakers showed different response profiles during the time course of the stress situations. AHR levels of both groups were similar at the beginning of the free speech. During the course of their presentation, seminar speakers downregulated their arousal level. The arousal level of TSST participants showed a further increase in the later portion of the TSST during the mental arithmetic task. Thus, the more prominent overall physiological stress reaction during the TSST as compared to the seminar presentation appeared to depend on different demand characteristics rather than on differences of laboratory versus real-life situations per se. The experience of emotional strain was greater in response to the social stressors than in response to control situations in both the TSST and seminar speaker group with no differential effects of the experimental setting (laboratory vs. real life). During the TSST procedure, salivary cortisol concentrations were also assessed. Significant correlations of AHR with cortisol level and subjective experience indicate that AHR measurement provides a valid psychophysiological indicator of social stress. These findings suggest that ambulatory assessment techniques successfully contribute to the validation of a common social stress task.

References

  • Al’Absi, M., Bongard, S., Buchanan, T., Pincomb, G. A., Licinio, J. & Lovallo, W. R. (1997). Cardiovascular and neuroendocrine adjustment to public speaking and mental arithmetic stressors. Psychophysiology, 34, 266–275. First citation in articleCrossrefGoogle Scholar

  • Allen, A. P., Kennedy, P. J., Cryan, J. F., Dindan, T. G. & Clarke, G. (2014). Biological and psychological markers of stress in humans: Focus on the Trier Social Stress Test. Neuroscience and Biobehavioral Reviews, 38, 94–124. First citation in articleCrossrefGoogle Scholar

  • Andreano, J. M. & Cahill, L. (2006). Glucocorticoid release and memory consolidation in men and women. Psychological Science, 17, 466–470. First citation in articleCrossrefGoogle Scholar

  • Bradley, M. M. & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. LaneL. NadelEds., Cognitive neuroscience of emotion (pp. 242–276). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Buchanan, T. W., Al’Absi, M. & Lovallo, W. R. (1999). Cortisol fluctuates with increases and decreases in negative affect. Psychoneuroendocrinology, 24, 227–241. First citation in articleCrossrefGoogle Scholar

  • Campbell, J. & Ehlert, U. (2012). Acute psychosocial stress: Does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology, 37, 1111–1134. First citation in articleCrossrefGoogle Scholar

  • Cohen, S., Hamrick, N., Rodriquez, M. S., Feldman, P. J., Rabin, B. S. & Manuck, S. B. (2000). The stability of and intercorrelations among cardiovascular, immune, endocrine, and psychological reactivity. Annals of Behavioral Medicine, 22, 171–179. First citation in articleCrossrefGoogle Scholar

  • Cohen, G. & Java, R. (1995). Memory for medical history. Accuracy of recall. Applied Cognitive Psychology, 9, 273–288. First citation in articleCrossrefGoogle Scholar

  • Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–391. First citation in articleCrossrefGoogle Scholar

  • Ebner-Priemer, U. W. & Kubiak, T. (2007). Psychological and psychophysiological ambulatory monitoring: A review of hardware and software solutions. European Journal of Psychological Assessment, 23, 214–226. First citation in articleLinkGoogle Scholar

  • Ebner-Priemer, U. W. & Kubiak, T. (2010). The decade of behavior revisited: Future prospects for ambulatory assessment. European Journal of Psychological Assessment, 26, 151–153. First citation in articleLinkGoogle Scholar

  • Ebner-Priemer, U. W. & Trull, T. J. (2009). Ambulatory assessment – An innovative and promising approach for clinical psychology. European Psychologist, 14, 109–119. doi: 10.1027/1016-9040.14.2.109 First citation in articleLinkGoogle Scholar

  • Erdmann, G. & Janke, W. (2008). SVF. Stressverarbeitungsfragebogen [Stress Coping Style Questionnaire]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Fahrenberg, J. & Foerster, F. (1982). Covariation and consistency of activation parameters. Biological Psychology, 15, 151–169. First citation in articleCrossrefGoogle Scholar

  • Fahrenberg, J., Hampel, R. & Selg, H. (2001). FPI-R. Das Freiburger Persönlichkeitsinventar. 7, überarbeitete und neu normierte Auflage [Freiburg Personality Inventory. 7th exp. ed.]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Fahrenberg, J., Myrtek, M., Pawlik, K. & Perrez, M. (2007). Ambulatory assessment: Monitoring behavior in daily life settings. European Journal of Psychological Assessment, 23, 206–213. First citation in articleLinkGoogle Scholar

  • Hautzinger, M. & Bailer, M. (1993). ADS. Allgemeine Depressions Skala [General Depression Scale]. Göttingen, Germany: Beltz Test GmbH. First citation in articleGoogle Scholar

  • Hellhammer, J. & Schubert, M. (2012). The physiological response to Trier Social Stress Test relates to subjective measures of stress during but not before or after the test. Psychoneuroendocrinology, 37, 119–124. First citation in articleCrossrefGoogle Scholar

  • Hey, S., Anastasopoulou, P., Bideaux, A. & Storck, W. (2014). Recent developments of ambulatory assessment methods. Journal of Neuropsychology, 25, 279–287. First citation in articleAbstractGoogle Scholar

  • Hufford, M. R., Shiffman, S., Paty, J. & Stone, A. A. (2001). Electronic momentary assessment: Real-world, real-time measurement of patient experience. In J. FahrenbergM. MyrtekEds., Progress in ambulatory assessment. Computer-assisted psychological and psychophysiological methods in monitoring and field studies (pp. 69–92). Göttingen, Germany: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Kirschbaum, C., Kudielka, B. M., Gaab, J., Schommer, N. C. & Hellhammer, D. H. (1999). Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamus-pituitary-adrenal axis. Psychosomatic Medicine, 61, 154–162. First citation in articleCrossrefGoogle Scholar

  • Kirschbaum, C., Pirke, K.-M. & Hellhammer, D. H. (1993). The “Trier Social Stress Test” – A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 76–81. First citation in articleCrossrefGoogle Scholar

  • Kudielka, B. M., Broderick, J. E. & Kirschbaum, C. (2003). Compliance with saliva sampling protocols: Electronic monitoring reveals invalid cortisol daytime profiles in noncompliant subjects. Psychosomatic Medicine, 65, 313–319. First citation in articleCrossrefGoogle Scholar

  • Kudielka, B. M., Gierens, A., Hellhammer, D. H., Wüst, S. & Schlotz, W. (2012). Salivary cortisol in ambulatory assessment – Some dos, some don’ts, and some open questions. Psychosomatic Medicine, 74, 418–431. First citation in articleCrossrefGoogle Scholar

  • Kudielka, B. M., Hellhammer, D. H. & Wüst, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34, 2–18. First citation in articleCrossrefGoogle Scholar

  • LeBeau, R., Mischel, R., Resnick, H., Kilpatrick, D., Friedman, M. & Craske, M. (2014). Dimensional assessment of posttraumatic stress disorder in DSM-5. Psychiatric Research, 218, 143–147. First citation in articleCrossrefGoogle Scholar

  • Lesage, F.-X., Berjot, S. & Deschamps, F. (2012). Clinical stress assessment using a visual analogue scale. Occupational Medicine, 62, 600–605. First citation in articleCrossrefGoogle Scholar

  • Loeffler, S. N., Myrtek, M. & Peper, M. (2013). Mood-congruent memory in daily life: Evidence from interactive ambulatory monitoring. Biological Psychology, 93, 308–315. First citation in articleCrossrefGoogle Scholar

  • Loeffler, S. N. & Peper, M. (2010). Emotionen, Lernen und Gedächtnis im Lebensalltag: Interaktives Psychophysiologisches Monitoring in Labor und Feld [Emotions, learning and memory in real life: Interactive psychophysiological monitoring in laboratory and real-life settings]. Frankfurt a. M., Germany: Peter Lang. First citation in articleGoogle Scholar

  • Loeffler, S. N. & Peper, M. (2014). Affect and memory in real life: Evaluating the utility of interactive ambulatory assessment. Journal of Neuropsychology, 25, 267–278. First citation in articleAbstractGoogle Scholar

  • Margraf, J., Taylor, C. B., Ehlers, A., Roth, W. T. & Agras, W. S. (1987). Panic attacks in the natural environment. Journal of Nervous and Mental Disease, 175, 558–565. First citation in articleCrossrefGoogle Scholar

  • Matthews, K. A., Owens, J. F., Allen, M. T. & Stoney, C. M. (1992). Do cardiovascular responses to laboratory stress relate to ambulatory blood pressure levels? Yes, in some of the people, some of the time. Psychosomatic Medicine, 54, 686–697. First citation in articleCrossrefGoogle Scholar

  • Merz, C. J., Wolf, O. T. & Hennig, J. (2010). Stress impairs retrieval of socially relevant information. Behavioral Neuroscience, 124, 288–293. First citation in articleCrossrefGoogle Scholar

  • M. Myrtek (2004). Heart and emotion: Ambulatory monitoring studies in everyday life. Göttingen, Germany: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Myrtek, M., Aschenbrenner, E. & Brügner, G. (2005). Emotions in everyday life: An ambulatory monitoring study with female students. Biological Psychology, 68, 237–255. First citation in articleCrossrefGoogle Scholar

  • Myrtek, M. & Brügner, G. (1996). Perception of emotions in everyday life: Studies with patients and normals. Biological Psychology, 42, 147–164. First citation in articleCrossrefGoogle Scholar

  • Myrtek, M., Foerster, F. & Brügner, G. (2001). Freiburger Monitoring System (FMS). Frankfurt a. M., Germany: Peter Lang. First citation in articleGoogle Scholar

  • Peper, M. & Loeffler, S. N. (2014). Neuropsychology in the real world: Applications and implications of ambulatory assessment. Journal of Neuropsychology, 25, 233–238. First citation in articleAbstractGoogle Scholar

  • Rohrmann, S., Hennig, J. & Netter, P. (1999). Changing psychobiological stress reactions by manipulating cognitive processes. International Journal of Psychophysiology, 33, 149–161. First citation in articleCrossrefGoogle Scholar

  • Schlotz, W., Kumsta, R., Layes, I., Entringer, S., Jones, A. & Wüst, S. (2008). Covariance between psychological and endocrine responses to pharmacological challenge and psychosocial stress: A question of timing. Psychosomatic Medicine, 70, 787–796. First citation in articleCrossrefGoogle Scholar

  • Schlotz, W. & Powell, D. J. H. (2014). Ambulatory assessment in neuropsychology. Journal of Neuropsychology, 25, 239–251. First citation in articleAbstractGoogle Scholar

  • Schommer, N. C., Hellhammer, D. H. & Kirschbaum, C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65, 450–460. First citation in articleCrossrefGoogle Scholar

  • Shiffman, S., Stone, A. A. & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32. First citation in articleCrossrefGoogle Scholar

  • Skoluda, N., Strahler, J., Schlotz, W., Niederberger, L., Marques, S., Fischer, S., … Nater, U. (2015). Intra-individual psychological and physiological responses to acute laboratory stressors of different intensity. Psychoneuroendocrinology, 51, 227–236. First citation in articleCrossrefGoogle Scholar

  • Van Doornen, L. J. P., Knol, D. L., Willemsen, G. & de Geus, E. J. C. (1994). The relationship between stress reactivity in the laboratory and in real-life: Is reliability the limitation factor? Psychophysiology, 8, 297–304. First citation in articleGoogle Scholar

  • van Eck, M., Berkhof, H., Nicolson, N. & Sulon, J. (1996). The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosomatic Medicine, 58, 447–458. First citation in articleCrossrefGoogle Scholar

  • Wilhelm, F. H. & Grossman, P. (2010). Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biological Psychology, 84, 552–569. First citation in articleCrossrefGoogle Scholar

  • Wolfram, M., Bellingrath, S., Feuerhahn, N. & Kudielka, B. M. (2012). Cortisol responses to naturalistic and laboratory stress in student teachers: Comparison with a non-stress control day. Stress and Health, 29, 143–149. First citation in articleCrossrefGoogle Scholar

  • World Medical Association. (1991). Declaration of Helsinki. Law Med Health Care, 19, 264–265. First citation in articleCrossrefGoogle Scholar