Skip to main content
Article

Vagally Mediated Heart Rate Variability Promotes the Perception of Paradoxical Pain

Published Online:https://doi.org/10.1027/0269-8803/a000175

Abstract. Self-regulation mechanisms are governed by prefrontal inhibitory processes and play a crucial role in the modulation of pain. In the present study the thermal grill paradigm was used to investigate the association of vagally mediated resting heart rate variability, a psychophysiological marker of trait self-regulatory capacity, with paradoxical pain sensations induced by non-noxious stimulation. This thermal grill illusion is only perceived by part of the tested individuals. The mechanisms underlying the observed interindividual differences in paradoxical pain sensitivity are largely unknown. During the experimental task, a temperature combination of 15 °C and 41 °C was set at the glass tubes of the thermal grill. The 52 healthy participants placed their dominant hand on the grill for a duration of one min. The magnitude of sensory and affective pain sensations perceived during stimulation was assessed with numerical rating scales. Before stimulation, a short-term electrocardiogram was recorded to compute vagally mediated heart rate variability at rest. Logistic regression analyses revealed that participants with higher vagal tone were significantly more likely to perceive the thermal grill illusion than subjects displaying lower resting heart rate variability. Paradoxical pain sensations were primarily predicted by normalized respiratory sinus arrhythmia. Our results confirm that the magnitude of vagally mediated resting heart rate variability is associated with the individual disposition to illusive pain perceptions. Since the latter is considered to be a marker of trait self-regulation ability, the present findings may corroborate and complement previous evidence for an impact of psychological characteristics on paradoxical pain sensitivity.

References

  • Appelhans, B. M. & Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Review of General Psychology, 10, 229–240. First citation in articleCrossrefGoogle Scholar

  • Appelhans, B. M. & Luecken, L. J. (2008). Heart rate variability and pain: Associations of two interrelated homeostatic processes. Biological Psychology, 77, 174–182. First citation in articleCrossrefGoogle Scholar

  • Arntz, A., Dreessen, L. & De Jong, P. (1994). The influence of anxiety on pain: Attentional and attributional mediators. Pain, 56, 307–314. First citation in articleCrossrefGoogle Scholar

  • Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68, 988–1001. First citation in articleCrossrefGoogle Scholar

  • Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G. & Malik, M. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648. First citation in articleCrossrefGoogle Scholar

  • Berntson, G. G., Lozano, D. L. & Chen, Y. J. (2005). Filter properties of root mean square successive difference (RMSSD) for heart rate. Psychophysiology, 42, 246–252. First citation in articleCrossrefGoogle Scholar

  • Bertsch, K., Hagemann, D., Naumann, E., Schächinger, H. & Schulz, A. (2012). Stability of heart rate variability indices reflecting parasympathetic activity. Psychophysiology, 49, 672–682. First citation in articleCrossrefGoogle Scholar

  • Boettger, M. K., Grossmann, D. & Bär, K. J. (2013). Increased cold and heat pain thresholds influence the thermal grill illusion in schizophrenia. European Journal of Pain, 17, 200–209. First citation in articleCrossrefGoogle Scholar

  • Boettger, M. K., Schwier, C. & Bär, K. J. (2011). Sad mood increases pain sensitivity upon thermal grill illusion stimulation: Implications for central pain processing. Pain, 152, 123–130. First citation in articleCrossrefGoogle Scholar

  • Bouhassira, D., Kern, D., Rouaud, J., Pelle-Lancien, E. & Morain, F. (2005). Investigation of the paradoxical painful sensation (“illusion of pain”) produced by a thermal grill. Pain, 114, 160–167. First citation in articleCrossrefGoogle Scholar

  • Bruehl, S. & Chung, O. Y. (2004). Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neuroscience & Biobehavioral Reviews, 28, 395–414. First citation in articleCrossrefGoogle Scholar

  • Campero, M., Baumann, T. K., Bostock, H. & Ochoa, J. L. (2009). Human cutaneous C fibres activated by cooling, heating and menthol. Journal of Physiology, 587, 5633–5652. First citation in articleCrossrefGoogle Scholar

  • Charlton, E. (1995). Ethical guidelines for pain research in humans. Committee on Ethical Issues of the International Association for the Study of Pain. Pain, 63, 277. First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2003). A new view of pain as a homeostatic emotion. Trends in Neurosciences, 26, 303–307. First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. (2008). Can the basis for central neuropathic pain be identified by using a thermal grill? Pain, 135, 215–216. First citation in articleCrossrefGoogle Scholar

  • Craig, A. D. & Bushnell, M. C. (1994). The thermal grill illusion: Unmasking the burn of cold pain. Science, 265, 252–255. First citation in articleCrossrefGoogle Scholar

  • Craig, A. D., Chen, K., Bandy, D. & Reiman, E. M. (2000). Thermosensory activation of insular cortex. Nature Neuroscience, 3, 184–190. First citation in articleCrossrefGoogle Scholar

  • Craig, A. D., Reiman, E. M., Evans, A. & Bushnell, M. C. (1996). Functional imaging of an illusion of pain. Nature, 384, 258–260. First citation in articleCrossrefGoogle Scholar

  • Defrin, R., Ohry, A., Blumen, N. & Urca, G. (2002). Sensory determinants of thermal pain. Brain, 125, 501–510. First citation in articleCrossrefGoogle Scholar

  • Edwards, L., McIntyre, D., Carroll, D., Ring, C., France, C. R. & Martin, U. (2003). Effects of artificial and natural baroreceptor stimulation on nociceptive responding and pain. Psychophysiology, 40, 762–769. First citation in articleCrossrefGoogle Scholar

  • Füstos, J., Gramann, K., Herbert, B. M. & Pollatos, O. (2013). On the embodiment of emotion regulation: Interoceptive awareness facilitates reappraisal. Social Cognitive and Affective Neuroscience, 8, 911–917. First citation in articleCrossrefGoogle Scholar

  • Gracely, R. H. (2006). Studies of pain in human subjects. In S. B. McMahonM. KoltzenburgEds., Wall and Melzack’s Textbook of Pain (pp. 267–289). Amsterdam, The Netherlands: Elsevier Limited Press. First citation in articleGoogle Scholar

  • Grossman, P. & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74, 263–285. First citation in articleCrossrefGoogle Scholar

  • Guasti, L., Zanotta, D., Mainardi, L. T., Petrozzino, M. R., Grimoldi, P., Garganico, D. & Diolisi, A. (2002). Hypertension-related hypoalgesia, autonomic function and spontaneous baroreflex sensitivity. Autonomic Neuroscience: Basic & Clinical, 99, 127–133. First citation in articleCrossrefGoogle Scholar

  • Hayano, J., Skakibara, Y., Yamada, M., Ohte, N., Fujinami, T., Yokoyama, K., … Takata, K. (1990). Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation, 81, 1217–1224. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, T., Sütterlin, S., Schulz, S. M. & Vögele, C. (2011). ARTiiFACT: A tool for heart rate artifact processing and heart rate variability analysis. Behavior Research Methods, 43, 1161–1170. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, T., Vögele, C., Sütterlin, S., Lukito, L. & Kübler, A. (2012). Effects of resting heart rate variability on performance in the P300 brain-computer interface. International Journal of Psychophysiology, 83, 336–341. First citation in articleCrossrefGoogle Scholar

  • Kever, A., Pollatos, O., Vermeulen, N. & Grynberg, D. (2015). Interoceptive sensitivity facilitates both antecedent- and response-focused emotion regulation strategies. Personality and Individual Differences, 87, 20–23. First citation in articleCrossrefGoogle Scholar

  • Koenig, J., Jarczok, M. N., Ellis, R. J., Hillecke, T. K. & Thayer, J. F. (2014). Heart rate variability and experimentally induced pain in healthy adults: A systematic review. European Journal of Pain, 18, 301–314. First citation in articleCrossrefGoogle Scholar

  • Koval, P., Ogrinz, B., Kuppens, P., Van den Bergh, O., Tuerlinckx, F. & Sütterlin, S. (2013). Affective instability in daily life is predicted by resting heart rate variability. PLoS One, 8, e81536. First citation in articleCrossrefGoogle Scholar

  • Kräuchi, K. & Wirz-Justice, A. (1994). Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. American Journal of Physiology, 267, 819–829. First citation in articleGoogle Scholar

  • Lindstedt, F., Lonsdorf, T. B., Schalling, M., Kosek, E. & Ingvar, M. (2011a). Perception of thermal pain and the thermal grill illusion is associated with polymorphisms in the serotonin transporter gene. PLoS One, 6, e17752. First citation in articleCrossrefGoogle Scholar

  • Lindstedt, F., Lonsdorf, T. B., Schalling, M., Kosek, E. & Ingvar, M. (2011b). Evidence for thalamic involvement in the thermal grill illusion: An FMRI Study. PLoS One, 6, e27075. First citation in articleCrossrefGoogle Scholar

  • Loggia, M. L., Juneau, M. & Bushnell, M. C. (2011). Autonomic responses to heat pain: Heart rate, skin conductance, and their relation to verbal ratings and stimulus intensity. Pain, 152, 592–598. First citation in articleCrossrefGoogle Scholar

  • Park, G. & Thayer, J. F. (2014). From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Frontiers of Psychology, 5, 278. First citation in articleCrossrefGoogle Scholar

  • Park, G., Vasey, M. W., Van Bavel, J. J. & Thayer, J. F. (2014). When tonic cardiac vagal tone predicts changes in phasic vagal tone: The role of fear and perceptual load. Psychophysiology, 51, 419–426. First citation in articleCrossrefGoogle Scholar

  • Piñerua-Shuhaibar, L., Villalobos, N., Delgado, N., Rubio, M. A. & Suarez-Roca, H. (2011). Enhanced central thermal nociception in mildly depressed nonpatients and transiently sad healthy subjects. The Journal of Pain, 12, 360–369. First citation in articleCrossrefGoogle Scholar

  • Pollatos, O., Füstös, J. & Critchley, H. D. (2012). On the generalised embodiment of pain: How interoceptive sensitivity modulates cutaneous pain perception. Pain, 153, 1680–1686. First citation in articleCrossrefGoogle Scholar

  • Randich, A. & Maixner, W. (1984). Interactions between cardiovascular and pain regulatory systems. Neuroscience and Biobehavioral Reviews, 8, 343–367. First citation in articleCrossrefGoogle Scholar

  • Rau, H. & Elbert, T. (2001). Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biological Psychology, 57, 179–201. First citation in articleCrossrefGoogle Scholar

  • Ritz, T., Thons, M. & Dahme, B. (2001). Modulation of respiratory sinus arrhythmia by respiration rate and volume: Stability across posture and volume variations. Psychophysiology, 38, 858–862. First citation in articleCrossrefGoogle Scholar

  • Rottenberg, J., Salomon, K., Gross, J. J. & Gotlib, I. H. (2005). Vagal withdrawal to a sad film predicts subsequent recovery from depression. Psychophysiology, 42, 277–281. First citation in articleCrossrefGoogle Scholar

  • Scheuren, R., Sütterlin, S. & Anton, F. (2014). Rumination and interoceptive accuracy predict the occurrence of the thermal grill illusion of pain. BMC Psychology, 2, 22. First citation in articleCrossrefGoogle Scholar

  • Segerstrom, S. C. & Solberg Nes, L. S. (2007). Heart rate variability reflects self-regulatory strength, effort, and fatigue. Psychological Science, 18, 275–281. First citation in articleCrossrefGoogle Scholar

  • Sinnreich, R., Kark, J. D., Friedlander, Y., Sapoznikov, D. & Luria, M. (1998). Five minute recordings of heart rate variability for population studies: Repeatability and age-sex characteristics. Heart, 80, 156–162. First citation in articleCrossrefGoogle Scholar

  • Solberg Nes, L., Roach, A. R. & Segerstrom, S. C. (2009). Executive functions, self-regulation, and chronic pain: A review. Annals of Behavioral Medicine, 37, 173–183. First citation in articleCrossrefGoogle Scholar

  • Stein, P. K., Rich, M. W., Rottman, J. N. & Kleiger, R. E. (1995). Stability of index of heart rate variability in patients with congestive heart failure. American Heart Journal, 129, 975–981. First citation in articleCrossrefGoogle Scholar

  • Sullivan, M. J., Thorn, B., Haythornthwaite, J. A., Keefe, F., Martin, M., Bradley, L. A. & Lefebvre, J. C. (2001). Theoretical perspectives on the relation between catastrophizing and pain. The Clinical Journal of Pain, 17, 52–64. First citation in articleCrossrefGoogle Scholar

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation, 93, 1043–1065. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. S. III, & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36, 747–756. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E. & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61, 201–216. First citation in articleCrossrefGoogle Scholar

  • Thunberg, T. (1896). Förnimmelserna vid till samma ställe lokaliserad, samtidigt pågående köld- och värmeretning [The sensation of simulataneous hot and cold stimuli in a localized area]. Uppsala Läkarfören Förh, 2, 489–495. First citation in articleGoogle Scholar

  • Treister, R., Kliger, M., Zuckerman, G., Aryeh, I. G. & Eisenberg, E. (2012). Differentiating between heat pain intensities: The combined effect of multiple autonomic parameters. Pain, 153, 1807–1814. First citation in articleCrossrefGoogle Scholar

  • Van Damme, S., Crombez, G. & Eccleston, C. (2002). Retarded disengagement from pain cues: The effects of pain catastrophizing and pain expectancy. Pain, 100, 111–118. First citation in articleCrossrefGoogle Scholar

  • Wang, X., Thayer, J. F., Treiber, F. & Snieder, H. (2005). Ethnic differences and heritability of heart rate variability in African- and European American youth. American Journal of Cardiology, 96, 1166–1172. First citation in articleCrossrefGoogle Scholar