Skip to main content
Article

Circadian Rhythms, Sleep, and Aging

Published Online:https://doi.org/10.1027/0269-8803/a000267

Abstract. Circadian mechanisms and the sleep-wakefulness rhythms guarantee survival, adaptation, efficient action in everyday life or in emergencies and well-being. Disordered circadian processes at central and/or cellular levels, sleep disorders, and unhealthy wakefulness/sleep rhythms can impair the physiological circadian organization and result in subjective, professional, or behavioral changes ranging from functional inadequacy to higher risks at work or on the road to medical relevance. Circadian rhythms and the sleep organization change ontogenetically; major changes result from normal aging and from the multiple diseases that are often associated. There are circular functional interactions involving sleep/sleep disorders, the autonomic and immune systems, and the functional changes in the circadian system due to aging that deserve attention but have been overlooked thus far.

References

  • Ako, M., Kawara, T., Uchida, S., Miyazaki, S., Nishihara, K., Mukai, J., Hirao, K., Ako, J., & Okubo, Y. (2003). Correlation between electroencephalography and heart rate variability during sleep. Psychiatry and Clinical Neuroscience, 57(1), 59–65. https://doi.org/10.1046/j.1440-1819.2003.01080.x First citation in articleCrossrefGoogle Scholar

  • Almeida, O. P., Alfonso, H., Yeap, B. B., Hankey, G., & Flicker, L. (2011). Complaints of difficulty to fall asleep increase the risk of depression in later life: The health in men study. Journal of Affective Disorders, 134(1–3), 208–216. https://doi.org/10.1016/j.jad.2011.05.045 First citation in articleCrossrefGoogle Scholar

  • Amer, M. S., Hamza, S. A., El Akkad, R. M., & Abdel Galeel, Y. I. I. (2013). Does self-reported sleep quality predict poor cognitive performance among elderly living in elderly homes? Aging & Mental Health, 17(7), 788–792. https://doi.org/10.1080/13607863.2013.790930 First citation in articleCrossrefGoogle Scholar

  • Asai, M., Yoshinobu, Y., Kaneko, S., Mori, A., Nikaido, T., Moriya, T., Akiyama, M., & Shibata, S. (2001). Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. Journal of Neuroscience Research, 66(6), 1133–1139. https://doi.org/10.1002/jnr.10010 First citation in articleCrossrefGoogle Scholar

  • Auyeung, T. W., Lee, J. S. W., Leung, J., Kwok, T., Leung, P. C., Woo, J., & Wing, Y. K. (2013). Cognitive deficit is associated with phase advance of sleep-wake rhythm, daily napping, and prolonged sleep duration – a cross-sectional study in 2,947 community-dwelling older adults. Age, 35(2), 479–486. https://doi.org/10.1007/s11357-011-9366-6 First citation in articleCrossrefGoogle Scholar

  • Barbosa, A. A., Miguel, M. A. L., Tufik, S., Sabino, F. C., Cendoroglo, M. S., & Pedrazzoli, M. (2016). Sleep disorder or simple sleep ontogeny? Tendency for morningness is associated with worse sleep quality in the elderly. Brazilian Journal of Medical and Biological Research, 49(10), Article e5311. https://doi.org/10.1590/1414-431X20165311 First citation in articleCrossrefGoogle Scholar

  • Bass, J. (2012). Circadian topology of metabolism. Nature, 491(7424), 348–356. https://doi.org/10.1038/nature11704 First citation in articleCrossrefGoogle Scholar

  • Beaulé, C., Robinson, B., Lamont, E. W., & Amir, S. (2003). Melanopsin in the circadian timing system. Journal of Molecular Neurosciences, 21, 73–89. https://doi.org/10.1385/JMN:21:1:73 First citation in articleCrossrefGoogle Scholar

  • Besedovsky, H., del Rey, A., Sorkin, E., & Dinarello, C. A. (1986). Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science, 233(4764), 652–654. https://doi.org/10.1126/science.3014662 First citation in articleCrossrefGoogle Scholar

  • Bierhaus, A., Wolf, J., Andrassy, M., Rohleder, N., Humpert, P. M., Petrov, D., Ferstl, R., von Eynatten, M., Wendt, T., Rudofsky, G., Joswig, M., Morcos, M., Schwaninger, M., McEwen, B., Kirschbaum, C., & Nawroth, P. P. (2003). A mechanism converting psychosocial stress into mononuclear cell activation. Proceedings of the National Academy of Sciences, 100(4), 1920–1925. https://doi.org/10.1073/pnas.0438019100 First citation in articleCrossrefGoogle Scholar

  • Blackwell, T., Yaffe, K., Ancoli-Israel, S., Redline, S., Ensrud, K. E., Stefanick, M. L., Laffan, A., Stone, K. L. & Osteoporotic Fractures in Men (MrOS) Study Group. (2011). Association of sleep characteristics and cognition in older community-dwelling men: The MrOS sleep study. Sleep, 34(10), 1347–1356. https://doi.org/10.5665/SLEEP.1276 First citation in articleCrossrefGoogle Scholar

  • Blatter, K., Opwis, K., Münch, M., Wirz-Justice, A., & Cajochen, C. (2005). Sleep loss-related decrements in planning performance in healthy elderly depend on task difficulty. Journal of Sleep Research, 14(4), 409–417. https://doi.org/10.1111/j.1365-2869.2005.00484.x First citation in articleCrossrefGoogle Scholar

  • Bonnet, M. H., & Arand, D. L. (1997). Heart rate variability: Sleep stage, time of night, and arousal influences. Electroencephalography and Clinical Neurophysiology, 102(5), 390–396. https://doi.org/10.1016/S0921-884X(96)96070-1 First citation in articleCrossrefGoogle Scholar

  • Brandenberger, G., Viola, A. U., Ehrhart, J., Charloux, A., Geny, B., Piquard, F., & Simon, C. (2003). Age-related changes in cardiac autonomic control during sleep. Journal of Sleep Research, 12(3), 173–180. https://doi.org/10.1046/j.1365-2869.2003.00353.x First citation in articleCrossrefGoogle Scholar

  • Brown, T. M., Wynne, J., Piggins, H. D., & Lucas, R. J. (2011). Multiple hypothalamic cell populations encoding distinct visual information. Journal of Physiology, 589(Pt 5), 1173–1194. https://doi.org/10.1113/jphysiol.2010.199877 First citation in articleCrossrefGoogle Scholar

  • Bruunsgaard, H., Ladelund, S., Pedersen, A. N., Schroll, M., Jørgensen, T., & Pedersen, B. K. (2003). Predicting death from tumour necrosis factor-alpha and interleukin-6 in 80-year-old people. Clinical and Experimental Immunology, 132(1), 24–31. https://doi.org/10.1046/j.1365-2249.2003.02137.x First citation in articleCrossrefGoogle Scholar

  • Bursztyn, M., & Stessman, J. (2005). The siesta and mortality: Twelve years of prospective observations in 70-year-olds. Sleep, 28(3), 345–357. https://doi.org/10.1093/sleep/28.3.345 First citation in articleGoogle Scholar

  • Campbell, S. S., Murphy, P. J., & Stauble, T. N. (2005). Effects of a nap on nighttime sleep and waking function in older subjects. Journal of American Geriatric Society, 53(1), 48–53. https://doi.org/10.1111/j.1532-5415.2005.53009.x First citation in articleCrossrefGoogle Scholar

  • Carrier, J., Monk, T. H., Reynolds, C. F., Buysse, D., & Kupfer, D. J. (1999). Are age differences in sleep due to phase differences in the output of the circadian timing system? Chronobiology International, 16(1), 79–91. https://doi.org/10.3109/07420529908998714 First citation in articleCrossrefGoogle Scholar

  • Chang, H. C., & Guarente, L. (2013). SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell, 153(7), 1448–1460. https://doi.org/10.1016/j.cell.2013.05.027 First citation in articleCrossrefGoogle Scholar

  • Chang, K. J., Son, S. J., Lee, Y., Back, J. H., Lee, K. S., Lee, S. J., Chung, Y. K., Lim, K. Y., Noh, J. S., Kim, H. C., Koh, S. H., Roh, H. W., Park, M. A., Kim, J. J., & Hong, C. H. (2014). Perceived sleep quality is associated with depression in a Korean elderly population. Archives of Gerontology and Geriatrics, 59(2), 468–473. https://doi.org/10.1016/j.archger.2014.04.007 First citation in articleCrossrefGoogle Scholar

  • Chen, C. Y., Logan, R. W., Ma, T., Lewis, D. A., Tseng, G. C., Sibille, E., & McClung, C. A. (2016). Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proceedings of the National Academy of Sciences, 113(1), 206–211. https://doi.org/10.1073/pnas.1508249112 First citation in articleCrossrefGoogle Scholar

  • Chen, C. Y., Kuo, T. B. J., Hsieh, I. T., & Yang, C. C. H. (2013). Electrical stimulation of the rostral ventrolateral medulla promotes wakefulness in rats. Sleep Medicine, 14(11), 1076–1084. https://doi.org/10.1016/j.sleep.2013.06.011 First citation in articleCrossrefGoogle Scholar

  • Cho, H. J., Lavretsky, H., Olmstead, R., Levin, M. J., Oxman, M. N., & Irwin, M. R. (2008). Sleep disturbance and depression recurrence in community-dwelling older adults: a prospective study. American Journal of Psychiatry, 165(12), 1543–1550. https://doi.org/10.1176/appi.ajp.2008.07121882 First citation in articleCrossrefGoogle Scholar

  • Chung, M. H., Kuo, T. B. J., Hsu, N., Chu, H., Chou, K. R., & Yang, C. C. H. (2009). Sleep and autonomic nervous system changes – enhanced cardiac sympathetic modulations during sleep in permanent night shift nurses. Scandinavian Journal of Work Environment & Health, 35(3), 180–187. https://doi.org/10.5271/sjweh.1324 First citation in articleCrossrefGoogle Scholar

  • Clegg, A., Young, J., Iliffe, S., Rikkert, M. O., & Rockwood, K. (2013). Frailty in elderly people. Lancet, 381(9868), 752–762. https://doi.org/10.1016/S0140-6736(12)62167-9 First citation in articleCrossrefGoogle Scholar

  • Crasset, V., Mezzetti, S., Antoine, M., Linkowski, P., Degaute, J. P., & van de Borne, P. (2001). Effects of aging and cardiac denervation on heart rate variability during sleep. Circulation, 103(1), 84–88. https://doi.org/10.1016/S0895-7061(01)01838-6 First citation in articleCrossrefGoogle Scholar

  • Crawford-Achour, E., Roche, F., Pichot, V., Celle, S., Barthélémy, J. C., & Chouchou, F. (2016). Sleep-related autonomic overactivity in a general elderly population and its relationship to cardiovascular regulation. Heart Vessels, 31(1), 46–51. https://doi.org/10.1007/s00380-014-0573-9 First citation in articleCrossrefGoogle Scholar

  • Crowley, S. J., Acebo, C., & Carskadon, M. A. (2007). Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Medicine, 8(6), 602–612. https://doi.org/10.1016/j.sleep.2006 First citation in articleCrossrefGoogle Scholar

  • Czeisler, C. A., Dumont, M., Duffy, J. F., Steinberg, J. D., Richardson, G. S., Brown, E. N., Sánchez, R., Ríos, C. D., & Ronda, J. M. (1992). Association of sleep–wake habits in older people with changes in output of circadian pacemaker. Lancet, 340(8825), 933–936. https://doi.org/10.1016/0140-6736(92)92817-y First citation in articleCrossrefGoogle Scholar

  • Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46–56. https://doi.org/10.1038/nrn2297 First citation in articleCrossrefGoogle Scholar

  • De Valck, E., Cluydts, R., & Pirrera, S. (2004). Effect of cognitive arousal on sleep latency, somatic and cortical arousal following partial sleep deprivation. Journal of Sleep Research, 13(4), 295–304. https://doi.org/10.1111/j.1365-2869.2004.00424 First citation in articleCrossrefGoogle Scholar

  • Dunlap, J. C. (2006). Proteins in the Neurospora circadian clockworks. Journal of Biological Chemistry, 281(39), 28489–28493. https://doi.org/10.1074/jbc.R600018200 First citation in articleCrossrefGoogle Scholar

  • Eaker, E. D., Chesebro, J. H., Sacks, F. M., Wenger, N. K., Whisnant, J. P., & Winston, M. (1993). Cardiovascular disease in women. Circulation, 88(4 Pt 1), 1999–2009. First citation in articleCrossrefGoogle Scholar

  • Engeland, W. C., & Arnhold, M. M. (2005). Neural circuitry in the regulation of adrenal corticosterone rhythmicity. Endocrine, 28(3), 325–332. https://doi.org/10.1385/ENDO:28:3:325 First citation in articleCrossrefGoogle Scholar

  • Farajnia, S., Michel, S., Deboer, T., vanderLeest, H. T., Houben, T., Rohling, J. H., Ramkisoensing, A., Yasenkov, R., & Meijer, J. H. (2012). Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. Journal of Neuroscience, 32(17), 5891–5899. https://doi.org/10.1523/JNEUROSCI.0469-12.2012 First citation in articleCrossrefGoogle Scholar

  • Feinsilver, S. H., & Hernandez, A. B. (2017). Sleep in the elderly: Unanswered questions. Clinics in Geriatric Medicine, 33(4), 579–596. https://doi.org/10.1016/j.cger.2017.06.009 First citation in articleCrossrefGoogle Scholar

  • Foley, D. J., Monjan, A. A., Brown, S. L., Simonsick, E. M., Wallace, R. B., & Blazer, D. J. (1995). Sleep complaints among elderly persons: An epidemiologic study of three communities. Sleep, 18(6), 425–432. https://doi.org/10.1093/sleep/18.6.425 First citation in articleCrossrefGoogle Scholar

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-Mental State. A practical method for grading the state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6 First citation in articleCrossrefGoogle Scholar

  • Friedman, B. H. (2007). An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74(2), 185–199. https://doi.org/10.1016/j.biopsycho.2005.08.009 First citation in articleCrossrefGoogle Scholar

  • Gagnon, K., Baril, A. A., Gagnon, J. F., Fortin, M., Décary, A., Lafond, C., Desautels, A., Montplaisir, J., & Gosselin, N. (2014). Cognitive impairment in obstructive sleep apnea. Pathologie Biologies, 62(5), 233–240. https://doi.org/10.1016/j.patbio.2014.05.015 First citation in articleCrossrefGoogle Scholar

  • Gamble, K. L., Berry, R., Frank, S. J., & Young, M. E. (2014). Circadian clock control of endocrine factors. Nature Reviews Endocrinology, 10(8), 466–475. https://doi.org/10.1038/nrendo.2014.78 First citation in articleCrossrefGoogle Scholar

  • Garbarino, S., & Sannita, W. G. (2017). Poor sleeping has underrepresented medical, healthcare, and social costs? European Journal of Internal Medicine, 38, e15–e16. https://doi.org/10.1016/j.ejim.2016.10.020 First citation in articleCrossrefGoogle Scholar

  • Garbarino, S., Lanteri, P., Durando, P., Magnavita, N., & Sannita, W. G. (2016). Co-morbidity, mortality, quality of life and the healthcare/welfare/social costs of disordered sleep: A rapid review. International Journal of Environmental Research and Public Health, 13(8), 831. https://doi.org/10.3390/ijerph13080831 First citation in articleCrossrefGoogle Scholar

  • Garbarino, S., Lanteri, P., Feeling, N. R., Jarczok, M. N., Quintana, D. S., Koenig, J., & Sannita, W. G. (2019). Circadian rhythms, sleep, and the autonomic nervous system: A position paper. Journal of Psychophysiology, 34(1), 1–9. https://doi.org/10.1027/0269-8803/a000236 First citation in articleLinkGoogle Scholar

  • Hagemann, D., Waldstein, S. R., & Thayer, J. F. (2003). Central and autonomic nervous system integration in emotion. Brain and Cognition, 52(1), 79–87. https://doi.org/10.1016/s0278-2626(03)00011-3 First citation in articleCrossrefGoogle Scholar

  • Hagenauer, M. H., Perryman, J. I., Lee, T. M., & Carskadon, M. A. (2009). Adolescent changes in the homeostatic and circadian regulation of sleep. Developmental Neuroscience, 31(4), 276–284. https://doi.org/10.1159/000216538 First citation in articleCrossrefGoogle Scholar

  • Hall, M. H., Smagula, S. F., Boudreau, R. M., Ayonayon, H. N., Goldman, S. E., Harris, T. B., Naydeck, B. L., Rubin, S. M., Samuelsson, L., Satterfield, S., Stone, K. L., Visser, M., & Newman, A. B. (2015). Association between sleep duration and mortality is mediated by markers of inflammation and health in older adults: The health, aging and body composition study. Sleep, 38(2), 189–195. https://doi.org/10.5665/sleep.4394 First citation in articleCrossrefGoogle Scholar

  • Hastings, M. H., Reddy, A. B., & Maywood, E. S. (2003). A clockwork web: Circadian timing in brain and periphery, in health and disease. Nature Reviews Neuroscience, 4(8), 649–661. https://doi.org/10.1038/nrn1177 First citation in articleCrossrefGoogle Scholar

  • Heraghty, J. L., Hilliard, T. N., Henderson, A. J., & Fleming, P. J. (2008). The physiology of sleep in infants. Archives of Diseases in Childhood, 93(11), 982–985. https://doi.org/10.1136/adc.2006 First citation in articleCrossrefGoogle Scholar

  • Hunt, N. J., Rodriguez, M. L., Waters, K. A., & Machaalani, R. (2015). Changes in orexin (hypocretin) neuronal expression with normal aging in the human hypothalamus. Neurobiology of Aging, 36(1), 292–300. https://doi.org/10.1016/j.neurobiolaging.2014.08.010 First citation in articleCrossrefGoogle Scholar

  • Jaussent, I., Dauvilliers, Y., Ancelin, M. L., Dartigues, J. F., Tavernier, B., Touchon, J., Ritchie, K., & Besset, A. (2011). Insomnia symptoms in older adults: Associated factors and gender differences. American Journal of Geriatric Psychiatry, 19(1), 88–97. https://doi.org/10.1097/JGP.0b013e3181e049b6 First citation in articleCrossrefGoogle Scholar

  • Johar, H., Kawan, R., Emeny, R. T., & Ladwig, K. H. (2016). Impaired sleep predicts cognitive decline in old people: Findings from the prospective KORA age study. Sleep, 39(1), 217–226. https://doi.org/10.5665/sleep.5352 First citation in articleCrossrefGoogle Scholar

  • Karasek, M. (2004). Melatonin, human aging, and age-related diseases. Experimental Gerontology, 39(11–12), 1723–1729. https://doi.org/10.1016/j.exger.2004.04.012 First citation in articleCrossrefGoogle Scholar

  • Kim, J. M., Stewart, R., Kim, S. W., Yang, S. J., Shin, I. S., & Yoon, J. S. (2009). Insomnia, depression, and physical disorders in late life: A 2-year longitudinal community study in Koreans. Sleep, 32(9), 1221–1228. https://doi.org/10.1093/sleep/32.9.1221 First citation in articleCrossrefGoogle Scholar

  • Kim, J. H., & Duffy, J. F. (2018). Circadian rhythm sleep-wake disorders in older adults. Sleep Medicine Clinics, 13(1), 39–50. https://doi.org/10.1016/j.jsmc.2017.09.004 First citation in articleCrossrefGoogle Scholar

  • Kiyan, E., Okumus, G., Cuhadaroglu, C., & Deymeer, F. (2010). Sleep apnea in adult myotonic dystrophy patients who have no excessive daytime sleepiness. Sleep Breath/Schlaf Atmung, 14(1), 19–24. https://doi.org/10.1007/s11325-009-0270-6 First citation in articleCrossrefGoogle Scholar

  • Kondratova, A. A., & Kondratov, R. V. (2012). The circadian clock and pathology of the ageing brain. Nature Reviews Neuroscience, 13(5), 325–335. https://doi.org/10.1038/nrn3208 First citation in articleCrossrefGoogle Scholar

  • Kriegsfeld, L. J., & Silver, R. (2006). The regulation of neuroendocrine function: Timing is everything. Hormones and Behavior, 49(5), 557–574. https://doi.org/10.1016/j.yhbeh.2005.12.011 First citation in articleCrossrefGoogle Scholar

  • Kuo, T. B. J., Chen, C. Y., Hsu, Y. C., & Yang, C. C. H. (2012). Performance of the frequency domain indices with respect to sleep staging. Clinical Neurophysiology, 123(7), 1338–1345. https://doi.org/10.1016/j.clinph.2011.11.003 First citation in articleCrossrefGoogle Scholar

  • Kuo, T. B. J., Chen, C. Y., Lai, C. T., Chuan, T. Y., Wu, W. Y., Tsai, S. C., & Yang, C. C. H. (2012). Sleep disturbance among spontaneously hypertensive rats is mediated by an alpha1-adrenergic mechanism. Hormones and Behavior, 25(10), 1110–1117. https://doi.org/10.1038/ajh.2012.93 First citation in articleGoogle Scholar

  • Kuo, T. B. J., Li, J. Y., Kuo, H. K., Chern, C. M., & Yang, C. C. (2016). Differential changes and interactions of autonomic functioning and sleep architecture before and after 50 years of age. Age, 38(1), 5. https://doi.org/10.1007/s11357-015-9863-0 First citation in articleCrossrefGoogle Scholar

  • Kuo, T. B. J., Lin, T., Yang, C. C. H., Li, C. L., Chen, C. F., & Chou, P. (1999). Effect of aging on gender differences in neural control of heart rate. American Journal of Physiology, 277(6 Pt 2), H2233–H2239. https://doi.org/10.1152/ajpheart.1999.277.6.H2233 First citation in articleGoogle Scholar

  • Kuo, T. B. J., Shaw, F. Z., Lai, C. J., & Yang, C. C. H. (2008). Asymmetry in sympathetic and vagal activities during sleep-wake transitions. Sleep, 31(3), 311–320. https://doi.org/10.1093/sleep/31.3.311 First citation in articleCrossrefGoogle Scholar

  • Liao, D., Barnes, R. W., Chambless, L. E., Simpson, R. J. Jr., Sorlie, P., & Heiss, G. (1995). Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability – the ARIC study: Atherosclerosis risk in communities. American Journal of Cardiology, 76(12), 906–912. https://doi.org/10.1016/s0002-9149(99)80260-4 First citation in articleCrossrefGoogle Scholar

  • Liu, C. C., Kuo, T. B. J., & Yang, C. C. H. (2003). Effects of estrogen on gender-related autonomic differences in humans. American Journal of Physiology-Heart and Circulatory Physiology, 285(5), H2188–H2193. https://doi.org/10.1152/ajpheart.00256.2003 First citation in articleCrossrefGoogle Scholar

  • Logan, R. W., & McClung, C. A. (2019). Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nature Review Neuroscience, 20(1), 49–65. https://doi.org/10.1038/s41583-018-0088-y First citation in articleCrossrefGoogle Scholar

  • Loredo, J. S., Clausen, J. L., Ancoli-Israel, S., & Dimsdale, J. E. (1999). Night-to-night arousal variability and interscorer reliability of arousal measurements. Sleep, 22(7), 916–920. https://doi.org/10.1093/sleep/22.7.916 First citation in articleCrossrefGoogle Scholar

  • Maggi, S., Langlois, J. A., Minicuci, N., Grigoletto, F., Pavan, M., Foley, D. J., & Enzi, G. (1998). Sleep complaints in community-dwelling older persons: Prevalence, associated factors, and reported causes. Journal of the American Geriatrics Society, 46(2), 161–168. https://doi.org/10.1111/j.1532-5415.1998.tb02533.x First citation in articleCrossrefGoogle Scholar

  • Mander, B. A., Rao, V., Lu, B., Saletin, J. M., Ancoli-Israel, S., Jagust, W. J., & Walker, M. P. (2014). Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults. Cerebral Cortex, 24(12), 3301–3309. https://doi.org/10.1093/cercor/bht188 First citation in articleCrossrefGoogle Scholar

  • Mander, B. A., Winer, J. R., & Walker, M. P. (2017). Sleep and human aging. Neuron, 94(1), 19–36. https://doi.org/10.1016/j.neuron.2017.02.004 First citation in articleCrossrefGoogle Scholar

  • Maywood, E. S., Mrosovsky, N., Field, M. D., & Hastings, M. H. (1999). Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proceedings of the National Academy of Sciences, 96(26), 15211–15216. https://doi.org/10.1073/pnas.96.26.15211 First citation in articleCrossrefGoogle Scholar

  • Mazzotti, D. R., Guindalini, C., Sosa, A. L., Ferri, C. P., & Tufik, S. (2012). Prevalence and correlates for sleep complaints in older adults in low and middle income countries: A 10/66 Dementia Research Group study. Sleep Medicine, 13(6), 697–702. https://doi.org/10.1016/j.sleep.2012.02.009 First citation in articleCrossrefGoogle Scholar

  • Moodithaya, S., & Avadhany, S. T. (2012). Gender differences in age related changes in cardiac autonomic nervous function. Journal of Aging Research, 2012, Article 679345. https://doi.org/10.1155/2012/679345 First citation in articleCrossrefGoogle Scholar

  • Moraes, W., Piovezan, R., Poyares, D., Bittencourt, L. R., Santos-Silva, R., & Tufik, R. (2014). Effects of aging on sleep structure throughout adulthood: A population-based study. Sleep Medicine, 15(4), 401–409. https://doi.org/10.1016/j.sleep.2013.11.791 First citation in articleCrossrefGoogle Scholar

  • Muller, J. E. (1999). Circadian variation in cardiovascular events. American Journal of Hypertension, 12(2 Pt 2), 35S–42S. https://doi.org/10.1016/s0895-7061(98)00278-7 First citation in articleCrossrefGoogle Scholar

  • Nakamura, T. J., Nakamura, W., Yamazaki, S., Kudo, T., Cutler, T., Colwell, C. S., & Block, G. D. (2011). Age-related decline in circadian output. Journal of Neuroscience, 31(28), 10201–10205. https://doi.org/10.1523/JNEUROSCI.0451-11.2011 First citation in articleCrossrefGoogle Scholar

  • Napadow, V., Dhond, R., Conti, G., Makris, N., Brown, E. N., & Barbieri, R. (2008). Brain correlates of autonomic modulation: Combining heart rate variability with fMRI. NeuroImage, 42(1), 169–177. https://doi.org/10.1016/j.neuroimage.2008.04.238 First citation in articleCrossrefGoogle Scholar

  • Newman, A. B., Enright, P. L., Manolio, T. A., Haponik, E. F., & Wahl, P. W. (1997). Sleep disturbance, psychosocial correlates, and cardiovascular disease in 5201 older adults: The Cardiovascular Health Study. Journal of the American Geriatrics Society, 45(1), 1–7. https://doi.org/10.1111/j.1532-5415.1997.tb00970.x First citation in articleCrossrefGoogle Scholar

  • Nielsen, T., Paquette, T., Solomonova, E., Lara-Carrasco, J., Colombo, R., & Lanfranchi, P. (2010). Changes in cardiac variability after REM sleep deprivation in recurrent nightmares. Sleep, 33(1), 113–122. https://doi.org/10.1093/sleep/33.1.113 First citation in articleCrossrefGoogle Scholar

  • Nitabach, M. N. (2005). Circadian rhythms: Clock coordination. Nature, 438(7065), 173–175. https://doi.org/10.1038/438173a First citation in articleCrossrefGoogle Scholar

  • Nygard, M., Hill, R. H., Wikstrom, M. A., & Kristensson, K. (2005). Age-related changes in electro-physiological properties of the mouse suprachiasmatic nucleus in vitro. Brain Research Bulletin, 65(2), 149–154. https://doi.org/10.1016/j.brainresbull.2004.12.006 First citation in articleCrossrefGoogle Scholar

  • Ohayon, M. M., & Vecchierini, M. F. (2005). Normative sleep data, cognitive function and daily living activities in older adults in the community. Sleep, 28(8), 981–989. https://doi.org/10.1093/sleep/28.8.981 First citation in articleGoogle Scholar

  • Panda, S., Hogenesch, J. B., & Kay, S. A. (2002). Circadian rhythms from flies to human. Nature, 417, 329–335. https://doi.org/10.1038/417329a First citation in articleCrossrefGoogle Scholar

  • Pandi-Perumal, S. R., Spence, D. W., & Sharma, V. K. (2010). Aging and circadian rhythms: General trends. In S. R. Pandi-PerumalJ. M. MontiA. A. MonjanEds., Principles and practice of geriatric sleep medicine (pp. 3–11). Cambridge University Press. First citation in articleGoogle Scholar

  • Park, M., Buchman, A. S., Lim, A. S., Leurgans, S. E., & Bennet, A. D. (2014). Sleep complaints and incident disability in a community-based cohort study of older persons. American Journal of Geriatric Psychiatry, 22(7), 718–726. https://doi.org/10.1016/j.jagp.2012.12.023 First citation in articleCrossrefGoogle Scholar

  • Pawelec, G. (2018). Age and immunity: What is “immunosenescence”? Experimental Gerontology, 105, 4–9. https://doi.org/10.1016/j.exger.2017.10.024 First citation in articleCrossrefGoogle Scholar

  • Pedraza, S., Al Snih, S., Ottenbacher, K. J., Markides, K. S., & Raji, M. A. (2012). Sleep quality and sleep problems in Mexican Americans aged 75 and older. Aging Clinical and Experimental Research, 24(4), 391–397. https://doi.org/10.3275/8106 First citation in articleGoogle Scholar

  • Pigeon, W. R., Hegel, M., Unutzer, J., Fan, M., Satela, M. J., Lyness, Y. M., Phillips, C., & Perlis, M. L. (2008). Is insomnia a perpetuating factor for late-life depression in the IMPACT cohort? Sleep, 31(4), 481–488. https://doi.org/10.1093/sleep/31.4.481 First citation in articleCrossrefGoogle Scholar

  • Press, Y., Punchik, B., & Freud, T. (2018). The association between subjectively impaired sleep and symptoms of depression and anxiety in a frail elderly population. Aging Clinical and Experimental Research, 30(7), 755–765. https://doi.org/10.1007/s40520-017-0837-1 First citation in articleCrossrefGoogle Scholar

  • Raggi, A., & Ferri, R. (2012). Cognitive evoked potentials in obstructive sleep apnea syndrome: A review of the literature. Reviews in Neurosciences, 23(3), 311–323. https://doi.org/10.1515/revneuro-2012-0027 First citation in articleCrossrefGoogle Scholar

  • Ramos, A. R., Gardener, H., Rundek, T., Elkind, M. S., Boden-Albala, B., Dong, C., Cheung, Y. K., Stern, Y., Sacco, R. L., & Wright, C. B. (2016). Sleep disturbances and cognitive decline in the Northern Manhattan Study. Neurology, 87(14), 1511–1516. https://doi.org/10.1212/WNL.0000000000003168 First citation in articleCrossrefGoogle Scholar

  • Reppert, S. M., & Weaver, D. R. (2002). Coordination of circadian timing in mammals. Nature, 418, 935–941. https://doi.org/10.1038/nature00965 First citation in articleCrossrefGoogle Scholar

  • Riganello, F., Dolce, G., Garbarino, S., & Sannita, W. G. (2014). Heart rate variability and the two-way interaction between CNS and the central autonomic network. Experimental & Clinical Cardiology, 20(9), 5584–5595. First citation in articleGoogle Scholar

  • Riganello, F., Garbarino, S., & Sannita, W. G. (2012). Heart rate variability, homeostasis, and brain function: A tutorial and review of application. Journal of Psychophysology, 26(4), 178–203. https://doi.org/10.1027/0269-8803/a000080 First citation in articleLinkGoogle Scholar

  • Roozendaal, B., van Gool, W. A., Swaab, D. F., Hoogendijk, J. E., & Mirmiran, M. (1987). Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging. Brain Research, 409(2), 259–264. https://doi.org/10.1016/0006-8993(87)90710-4 First citation in articleCrossrefGoogle Scholar

  • Ruiz Vargas, E., Sörös, P., Shoemaker, J. K., & Hachinski, V. (2016). Human cerebral circuitry related to cardiac control: A neuroimaging meta-analysis. Annals of Neurology, 79(5), 709–716. https://doi.org/10.1002/ana.24642 First citation in articleCrossrefGoogle Scholar

  • Sabeti, S., Al-Darsani, Z., Mander, B. A., Corrada, M. M., & Kawas, C. H. (2018). Sleep, hippocampal volume, and cognition in adults over 90 years old. Aging Clinical and Experimental Research, 30(11), 1307–1318. https://doi.org/10.1007/s40520-018-1030-x First citation in articleCrossrefGoogle Scholar

  • Saint Martin, M., Sforza, E., Barthelemy, J. C., Thomas-Anterion, C., & Roche, F. (2012). Does subjective sleep affect cognitive function in healthy elderly subjects? The Proof cohort. Sleep Medicine, 13(9), 1146–1152. https://doi.org/10.1016/j.sleep.2012.06.021 First citation in articleCrossrefGoogle Scholar

  • Sampaio, R. A., Sewo Sampaio, P. Y., Yamada, M., Tsuboyama, T., & Arai, H. (2014). Self-reported quality of sleep is associated with bodily pain, vitality and cognitive impairment in Japanese older adults. Geriatrics & Gerontology International, 14(3), 628–635. https://doi.org/10.1111/ggi.12149 First citation in articleCrossrefGoogle Scholar

  • Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263. https://doi.org/10.1038/nature04284 First citation in articleCrossrefGoogle Scholar

  • Schibler, U., Ripperger, J., & Brown, S. A. (2003). Peripheral circadian oscillators in mammals: Time and food. Journal of Biological Rhythms, 18(3), 250–260. https://doi.org/10.1016/B978-0-12-396971-2.00004-X First citation in articleCrossrefGoogle Scholar

  • Schmidt, C., Peigneux, P., & Cajochen, C. (2012). Age-related changes in sleep and circadian rhythms: Impact on cognitive performance and underlying neuroanatomical networks. Frontiers in Neurology, 3, 118. https://doi.org/10.3389/fneur.2012.00118 First citation in articleCrossrefGoogle Scholar

  • Schmidt, R. E., Renaud, O., & van der Linden, M. (2011). Nocturnal regrets and insomnia in elderly people. International Journal of Aging and Human Development, 73(4), 371–393. https://doi.org/10.2190/AG.73.4.f First citation in articleCrossrefGoogle Scholar

  • Scholz, U. J., Bianchi, A. M., Cerutti, S., & Kubicki, S. (1997). Vegetative background of sleep: Spectral analysis of the heart rate variability. Physiology & Behavior, 62(5), 1037–1043. https://doi.org/10.1016/S0031-9384(97)00234-5 First citation in articleCrossrefGoogle Scholar

  • Scullin, M. K., Fairley, J., Decker, M. J., & Bliwise, D. L. (2017). The effects of an afternoon nap on episodic memory in young and older adults. Sleep, 40(5), Article zsx035. https://doi.org/10.1093/sleep/zsx035 First citation in articleCrossrefGoogle Scholar

  • Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437(7063), 1264–1271. https://doi.org/10.1038/nature04285 First citation in articleCrossrefGoogle Scholar

  • Silver, R., & Kriegsfeld, L. J. (2014). Circadian rhythms have broad implications for understanding brain and behavior. European Journal of Neuroscience, 39(11), 1866–1880. https://doi.org/10.1111/ejn.12593 First citation in articleCrossrefGoogle Scholar

  • Skeldon, A. C., Derks, G., & Dijk, D. J. (2016). Modelling changes in sleep timing and duration across the lifespan: Changes in circadian rhythmicity or sleep homeostasis? Sleep Medicine Reviews, 28, 96–107. https://doi.org/10.1016/j.smrv.2015.05.011 First citation in articleCrossrefGoogle Scholar

  • Smagula, S. F., Stone, K. L., Redline, S., Ancoli-Israel, S., Barrett-Connor, E., Lane, N. E., Orwoll, E. S., Cauley, J. A. & Osteoporotic Fractures in Men (MrOS) Research Group. (2016). Actigraphy- and polysomnography-measured sleep disturbances, inflammation, and mortality among older men. Psychosomatic Medicine, 78(6), 686–696. https://doi.org/10.1097/PSY.0000000000000312 First citation in articleCrossrefGoogle Scholar

  • Sollars, P. J., Smeraski, C. A., Kaufman, J. D., Ogilvie, M. D., Provencio, I., & Pickard, G. E. (2003). Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Visual Neuroscience, 20(6), 601–610. https://doi.org/10.1017/s0952523803206027 First citation in articleCrossrefGoogle Scholar

  • Song, Y., Blackwell, T., Yaffe, K., Ancoli-Israel, S., Redline, S., Stone, K. L. & Osteoporotic Fractures in Men (MrOS) Study Group. (2015). Relationships between sleep stages and changes in cognitive function in older men: The MrOS sleep study. Sleep, 38(3), 411–421. https://doi.org/10.5665/sleep.4500 First citation in articleCrossrefGoogle Scholar

  • St George, R. J., Delbaere, K., Williams, P., & Lord, S. R. (2009). Sleep quality and falls in older people living in self- and assisted-care villages. Gerontology, 55(2), 162–168. https://doi.org/10.1159/000146786 First citation in articleCrossrefGoogle Scholar

  • Stein, P. K., & Pu, Y. (2012). Heart rate variability, sleep and sleep disorders. Sleep Medicine Reviews, 16(1), 47–66. https://doi.org/10.1016/j.smrv.2011.02.005 First citation in articleCrossrefGoogle Scholar

  • Steptoe, A., Hamer, M., & Chida, Y. (2007). The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behavior and Immunity, 21(7), 901–912. https://doi.org/10.1016/j.bbi.2007.03.011 First citation in articleCrossrefGoogle Scholar

  • Stranges, S., Tigbe, W., Gomez-Olive, F. X., Thorogood, M., & Kandala, N. (2012). Sleep problems: An emerging global epidemic? Findings from the INDEPTH WHO-SAGE study among more than 40,000 older adults from 8 countries across Africa and Asia. Sleep, 35(8), 1173–1181. https://doi.org/10.5665/sleep.2012 First citation in articleCrossrefGoogle Scholar

  • Swaab, D. F., Fliers, E., & Partiman, T. S. (1985). The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Research, 342(1), 37–44. https://doi.org/10.1016/0006-8993(85)91350-2 First citation in articleCrossrefGoogle Scholar

  • Tardy, M., Gonthier, R., Barthelemy, J. C., Roche, F., & Crawford-Achour, E. (2015). Subjective sleep and cognitive complaints in 65 year old subjects: A significant association. The PROOF cohort. Journal of Nutrition, Health & Aging, 19(4), 424–430. https://doi.org/10.1007/s12603-014-0547-8 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Åhs, F., Fredrikson, M., Sollers, J. J. 3rd, & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral Reviews, 36(2), 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., & Sternberg, E. (2006). Beyond heart rate variability: Vagal regulation of allostatic systems. Annals of the New York Academy of Science, 1088, 361–372. https://doi.org/10.1196/annals.1366.014 First citation in articleCrossrefGoogle Scholar

  • Touitou, Y., Reinberg, A., & Touitou, D. (2017). Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption. Life Sciences, 173, 94–106. https://doi.org/10.1016/j.lfs.2017.02.008 First citation in articleCrossrefGoogle Scholar

  • Tsukahara, S., Tanaka, S., Ishida, K., Hoshi, N., & Kitagawa, H. (2005). Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats. Experimental Gerontology, 40(3), 147–155. https://doi.org/10.1016/j.exger.2004.10.003 First citation in articleCrossrefGoogle Scholar

  • Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. Journal of American College of Cardiology, 31(3), 593–601. https://doi.org/10.1016/s0735-1097(97)00554-8 First citation in articleCrossrefGoogle Scholar

  • Volpato, S., Guralnik, J. M., Ferrucci, L., Balfour, J., Chaves, P., Fried, L. P., & Harris, T. B. (2001). Cardiovascular disease, interleukin-6, and risk of mortality in older women: The women’s health and aging study. Circulation, 103(7), 947–953. https://doi.org/10.1161/01.CIR.103.7.947 First citation in articleCrossrefGoogle Scholar

  • Xu, L., Jiang, C. Q., Lam, T. H., Liu, B., Jin, Y. L., Zhu, T., Zhang, W. S., Cheng, K. K., & Thomas, G. N. (2011). Short or long sleep duration is associated with memory impairment in older Chinese: The Guangzhou biobank cohort study. Sleep, 34(5), 575–580. https://doi.org/10.1093/sleep/34.5.575 First citation in articleCrossrefGoogle Scholar

  • Yamazaki, S., Straume, M., Tei, H., Sakaki, Y., Menaker, M., & Block, G. D. (2002). Effects of aging on central and peripheral mammalian clocks. Proceedings of the National Academy of Sciences, 99(16), 10801–10806. https://doi.org/10.1073/pnas.152318499 First citation in articleCrossrefGoogle Scholar

  • Yordanova, J., Kolev, V., Hohnsbein, J., & Falkenstein, M. (2004). Sensorimotor slowing with ageing is mediated by a functional dysregulation of motor-generation processes: Evidence from high-resolution event-related potentials. Brain, 127 Pt 2, 351–362. https://doi.org/10.1093/brain/awh042 First citation in articleCrossrefGoogle Scholar

  • Zeitzer, J. M., Daniels, J. P., Duffy, J. F., Klerman, E. B., Shanahan, T. L., Dijk, D. J., & Czeisler, C. A. (1999). Do plasma melatonin concentrations decline with age? American Journal of Medicine, 107(4), 432–436. https://doi.org/10.1016/s0002-9343(99)00266-1 First citation in articleCrossrefGoogle Scholar

  • Zhou, J. N., Hofman, M. A., & Swaab, D. F. (1995). VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiology of Aging, 16(4), 571–576. https://doi.org/10.1016/0197-4580(95)00043-e First citation in articleCrossrefGoogle Scholar