Skip to main content
Original Article

Construct Your Own Response

The Cube Construction Task as a Novel Format for the Assessment of Spatial Ability

Published Online:https://doi.org/10.1027/1015-5759/a000342

Abstract. The cube construction task represents a novel format in the assessment of spatial ability through mental cube rotation tasks. Instead of selecting the correct answer from several response options, testees construct their own response in a computerized test environment. The format has several advantages: It is no longer possible to guess the correct response or to compare the reference cube to the response options, resulting in a higher demand for spatial ability. Moreover, it is possible to create items with a particularly high difficulty which are needed for the assessment of intellectual giftedness. In the present study, we developed 28 items and presented them to a sample of 130 university students. Test results showed that the items possess a very high statistical difficulty. Furthermore, the item set yielded a very high internal consistency. The results of an exploratory factor analysis as well as of a multidimensional IRT analysis indicated that a two-factor solution (“spatial relations” vs. “spatial visualization”) is plausible. Response time had a negligible influence on accuracy. Perspectives on further research concerning the cube construction task and possibilities for practical applications are being discussed.

References

  • Amthauer, R., Brocke, B., Liepmann, D. & Beauducel, A. (2001). Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R) [Intelligence-Structure-Test 2000 R]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Arendasy, M. E. & Sommer, M. (2013). Reducing response elimination strategies enhances the construct validity of figural matrices. Intelligence, 41, 234–243. First citation in articleCrossrefGoogle Scholar

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-8. Retrieved from http://CRAN.R-project.org/package=lme4 First citation in articleGoogle Scholar

  • Beauducel, A. & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in confirmatory factor analysis. Structural Equation Modeling, 13, 186–203. First citation in articleCrossrefGoogle Scholar

  • Becker, N., Preckel, F., Karbach, J., Raffel, N. & Spinath, F. M. (2015). Die Matrizenkonstruktionsaufgabe: Validierung eines distraktorfreien Aufgabenformats zur Vorgabe figuraler Matrizenaufgaben [The Construction Task: Validation of a distractor-free item format for the presentation of figural matrices]. Diagnostica, 61, 22–33. First citation in articleLinkGoogle Scholar

  • Bethell-Fox, C. E., Lohman, D. & Snow, R. E. (1984). Adaptive reasoning: Componential and eye movement analysis of geometric analogy performance. Intelligence, 8, 205–238. First citation in articleCrossrefGoogle Scholar

  • Carpenter, P. A., Just, M. A. & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychological Review, 97, 404–431. First citation in articleCrossrefGoogle Scholar

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York, NY: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Carroll, J. B. (1996). A three-stratum theory of intelligence: Spearman’s contribution. In I. DennisP. TapsfieldEds., Human abilities: Their nature and measurement (pp. 1–17). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29. First citation in articleCrossrefGoogle Scholar

  • Colom, R., Contreras, M. J., Shih, P. C. & Santacreu, J. (2003). The assessment of spatial ability with a single computerized test. European Journal of Psychological Assessment, 19, 92–100. First citation in articleLinkGoogle Scholar

  • Eliot, J. & Macfarlane Smith, I. (1983). An international directory of spatial tests. Windsor, Berkshire: NFER-Nelson. First citation in articleGoogle Scholar

  • Gittler, G. (1990). Dreidimensionaler Würfeltest (3DW) [Three dimensional-Cube-Test]. Weinheim, Germany: Beltz. First citation in articleGoogle Scholar

  • Glück, J. & Fitting, S. (2003). Spatial strategy selection: Interesting incremental information. International Journal of Testing, 3, 293–308. First citation in articleCrossrefGoogle Scholar

  • Goldhammer, F., Naumann, J. & Greiff, S. (2015). More is not always better: The relation between item response and item response time in Raven’s Matrices. Journal of Intelligence, 3, 21–40. First citation in articleCrossrefGoogle Scholar

  • Goldhammer, F., Naumann, J., Stelter, A., Tóth, K., Rölke, H. & Klieme, E. (2014). The time on task effect in reading and problem solving is moderated by task difficulty and skill: Insights from a computer-based large-scale assessment. Journal of Educational Psychology, 106, 608–626. First citation in articleCrossrefGoogle Scholar

  • Halekoh, U. & Højsgaard, S. (2014). A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models – the R package pbkrtest. Journal of Statistical Software, 59, 1–30. First citation in articleCrossrefGoogle Scholar

  • Halpern, D. F. & Collaer, M. L. (2005). Sex differences in visuospatial abilities: More than meets the eye. In P. ShahA. MiakeEds., The Cambridge Handbook of Visuospatial Thinking (pp. 170–212). New York, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Harle, M. & Towns, M. (2011). A review of spatial ability literature, its connection to chemistry, and implications for instruction. Journal of Chemical Education, 88, 351–360. First citation in articleCrossrefGoogle Scholar

  • Heil, M. & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? The Quarterly Journal of Experimental Psychology, 61, 683–689. First citation in articleCrossrefGoogle Scholar

  • Irwing, P. & Lynn, R. (2005). Sex differences in means and variability on the Progressive Matrices in university students: A meta-analysis. British Journal of Psychology, 96, 505–524. First citation in articleCrossrefGoogle Scholar

  • Jarosz, A. F. & Wiley, J. (2012). Why does working memory capacity predict RAPM performance? A possible role of distraction. Intelligence, 40, 427–438. First citation in articleCrossrefGoogle Scholar

  • Jäger, A. O., Süß, H.-M. & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test (BIS) [Berlin-Intelligence-Structure-Test]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger. First citation in articleGoogle Scholar

  • Linn, M. C. & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498. First citation in articleCrossrefGoogle Scholar

  • Lohman, D. F. (1979). Spatial ability: A review and re-analysis of the correlational literature (Technical Report No. 8). Stanford, CA: Aptitudes Research Project, School of Education, Stanford University. First citation in articleGoogle Scholar

  • Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. SternbergEd., Advances in the psychology of human intelligence (Vol. 4, pp. 181–248). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Lohman, D. F. (1996). Spatial ability and g. In I. DennisP. TapsfieldEds., Human abilities: Their nature and measurement (pp. 97–116). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Lovett, A. & Forbus, K. (2012). Modeling multiple strategies for solving geometric analogy problems. Proceedings of the 34th Annual Conference of the Cognitive Science Society. Sapporo, Japan. First citation in articleGoogle Scholar

  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1–10. First citation in articleCrossrefGoogle Scholar

  • Mislevy, R. J. & Verhelst, N. (1990). Modeling item responses when different subjects employ different solution strategies. Psychometrika, 55, 195–215. First citation in articleCrossrefGoogle Scholar

  • Mittring, G. & Rost, D. H. (2008). Die verflixten Distraktoren: Über den Nutzen einer theoretischen Distraktorenanalyse bei Matrizentests (für besser Begabte und Hochbegabte) [The nasty distracters. On the utility of a notional distracter analysis of items of matrices-test for the highly gifted]. Diagnostica, 54, 193–201. First citation in articleLinkGoogle Scholar

  • Muthén, B. O. & Muthén, L. K. (2007). MPlus Version 6. Los Angeles, CA: Muthén & Muthén. First citation in articleGoogle Scholar

  • Orlando, M. & Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50–64. First citation in articleCrossrefGoogle Scholar

  • Putz-Osterloh, W. (1981). Problemlöseprozesse und Intelligenzleistung [Problem-solving processes and intelligence performance]. Bern, Switzerland: Huber. First citation in articleGoogle Scholar

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. First citation in articleGoogle Scholar

  • Robinson, N. M. & Janos, P. M. (1987). The contribution of intelligence tests to the understanding of special children. In J. D. DayJ. B. BorkowskiEds., Intelligence and exceptionality: New directions for theory, assessment, and instructional practices (pp. 21–56). Norwood, NJ: Ablex. First citation in articleGoogle Scholar

  • Rost, D. H. & Sparfeldt, J. R. (2007). Leseverständnis ohne Lesen? Zur Konstruktvalidität von multiple-choice-Leseverständnistestaufgaben [Reading comprehension without reading? On the construct validity of multiple-choice Reading Comprehension Test items]. Zeitschrift für Pädagogische Psychologie, 21, 305–314. First citation in articleLinkGoogle Scholar

  • Schmidt, F. L. & Hunter, J. E. (1998). The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychological Bulletin, 124, 262–274. First citation in articleCrossrefGoogle Scholar

  • Snow, R. E. (1980). Aptitude processes. In R. E. SnowP. A. FedericoW. E. MontagueEds., Aptitude, learning and instruction (Vol. 1, pp. 27–63). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Vigneau, F., Caissie, A. F. & Bors, D. A. (2006). Eye-movement analysis demonstrates strategic influences on intelligence. Intelligence, 34, 261–272. First citation in articleCrossrefGoogle Scholar

  • Voyer, D., Voyer, S. & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270. First citation in articleCrossrefGoogle Scholar

  • Wai, J., Lubinski, D. & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835. First citation in articleCrossrefGoogle Scholar

  • Webb, R. M., Lubinski, D. & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99, 397–420. First citation in articleCrossrefGoogle Scholar