Skip to main content
Multistudy Report

A Continuous-Time Mixture Latent-State-Trait Markov Model for Experience Sampling Data

Application and Evaluation

Published Online:https://doi.org/10.1027/1015-5759/a000418

Abstract. In psychological research, statistical models of latent state-trait (LST) theory are popular for the analysis of longitudinal data. We identify several limitations of available models when applied to intensive longitudinal data with categorical observed and latent variables and inter- and intraindividually varying time intervals. As an extension of available LST models for categorical data, we describe a general mixed continuous-time LST model that is suitable for intensive longitudinal data with unobserved heterogeneity and individually varying time intervals. This model is illustrated by an application to momentary mood data that were collected in an experience sampling study (N = 164). In addition, the results of a simulation study are reported that was conducted to find out (a) the minimal data requirements with respect to sample size and number of occasions, and (b) how strong the bias is if the continuous-time structure is ignored. The empirical application revealed two classes for which the transition pattern and effects of time-varying covariates differ. In the simulation study, only small differences between the continuous-time model and its discrete-time counterpart emerged. Sample sizes N = 100 and larger in combination with six or more occasions of measurement tended to produce reliable estimation results. Implications of the models for future research are discussed.

References

  • Bandalos, D. L. (2006). The use of Monte Carlo studies in structural equation modeling research. In G. R. HancockR. E. MuellerEds., Structural equation modeling: A second course (pp. 385–426). Greenwich, CT: Information Age. First citation in articleGoogle Scholar

  • Böckenholt, U. (2005). A latent Markov model for the analysis of longitudinal data collected in continuous time: States, durations, and transitions. Psychological Methods, 10, 65–83. doi: 10.1037/1082-989x.10.1.65 First citation in articleCrossrefGoogle Scholar

  • Coleman, J. S. (1981). Longitudinal data analysis. New York, NY: Basic Books. First citation in articleGoogle Scholar

  • Courvoisier, D. S., Eid, M. & Nussbeck, F. W. (2007). Mixture distribution state-trait analysis, basic ideas and applications. Psychological Methods, 12, 80–104. doi: 10.1037/1082-989x.12.1.80 First citation in articleCrossrefGoogle Scholar

  • Crayen, C., Eid, M., Lischetzke, T., Courvoisier, D. S. & Vermunt, J. K. (2012). Exploring dynamics in mood regulation-mixture latent Markov modeling of ambulatory assessment data. Psychosomatic Medicine, 74, 366–376. doi: 10.1097/psy.0b013e31825474cb First citation in articleCrossrefGoogle Scholar

  • DeLongis, A., Folkman, S. & Lazarus, R. S. (1988). The impact of daily stress on health and mood: Psychological and social resources as mediators. Journal of Personality and Social Psychology, 54, 486–495. doi: 10.1037/0022-3514.54.3.486 First citation in articleCrossrefGoogle Scholar

  • Driver, C. C., Oud, J. H. L. & Voelkle, M. C. (in press). Continuous time structural equation modeling with R package ctsem. Journal of Statistical Software. Retrieved from https://cran.r-project.org/web/packages/ctsem/vignettes/ctsem.pdf First citation in articleGoogle Scholar

  • Eid, M. (2002) A closer look at the measurement of change: Integrating latent state-trait models into the general framework of latent mixed Markov modeling. Methods of Psychological Research Online, 7, 33–52. First citation in articleGoogle Scholar

  • Eid, M. (2007). Latent class models for analyzing variability and change. In A. OngM. van DulmenEds., Handbook of methods in positive psychology (pp. 591–607). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Eid, M., Courvoisier, D. S. & Lischetzke, T. (2012). Structural equation modeling of ambulatory assessment data. In M. MehlT. S. ConnerEds., Handbook of research methods (pp. 384–406). New York, NY: Guilford Press. First citation in articleGoogle Scholar

  • Eid, M. & Hoffmann, L. (1998). Measuring variability and change with an item response model for polytomous variables. Journal of Educational and Behavioral Statistics, 23, 171–193. doi: 10.2307/1165244 First citation in articleCrossrefGoogle Scholar

  • Eid, M. & Langeheine, R. (1999). The measurement of consistency and occasion specificity with latent class models: A new model and its application to the measurement of affect. Psychological Methods, 4, 100–116. doi: 10.1037/1082-989x.4.1.100 First citation in articleCrossrefGoogle Scholar

  • Eid, M. & Langeheine, R. (2003). Separating stable from variable individuals in longitudinal studies by mixture distribution models. Measurement: Interdisciplinary Research and Perspective, 1, 179–206. doi: 10.1207/s15366359mea0103_01 First citation in articleCrossrefGoogle Scholar

  • Eid, M. & Langeheine, R. (2007). Detecting population heterogeneity in stability and change of subjective well-being. In A. OngM. van DulmenEds., Handbook of methods in positive psychology (pp. 608–632). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable Models. Biometrika, 61, 215–231. doi: 10.2307/2334349 First citation in articleCrossrefGoogle Scholar

  • Gross, J. J. (2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26, 1–26. doi: 10.1080/1047840X.2014.940781 First citation in articleCrossrefGoogle Scholar

  • Harwell, M., Stone, C. A., Hsu, T. C. & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20, 101–125. doi: 10.1177/014662169602000201 First citation in articleCrossrefGoogle Scholar

  • Hedeker, D., Mermelstein, R. J., Berbaum, M. L. & Campbell, R. T. (2009). Modeling mood variation associated with smoking: An application of a heterogeneous mixed-effects model for analysis of ecological momentary assessment (EMA) data. Addiction, 104, 297–307. doi: 10.1111/j.1360-0443.2008.02435.x First citation in articleCrossrefGoogle Scholar

  • Kalbfleisch, J. D. & Lawless, J. F. (1985). The analysis of panel data under a Markov assumption. Journal of the American Statistical Association, 80, 863–871. doi: 10.1080/01621459.1985.10478195 First citation in articleCrossrefGoogle Scholar

  • Kuppens, P. & Verduyn, P. (2015). Looking at emotion regulation through the window of emotion dynamics. Psychological Inquiry, 26, 72–79. doi: 10.1080/1047840X.2015.960505 First citation in articleCrossrefGoogle Scholar

  • Langeheine, R. & Eid, M. (2003). Mixture distribution state-trait models, current limitations and future directions. Measurement: Interdisciplinary Research and Perspective, 1, 232–240. doi: 10.1207/S15366359MEA0103_01 First citation in articleCrossrefGoogle Scholar

  • Langeheine, R. & van de Pol, F. (1990). A unifying framework for Markov modeling in discrete space and discrete time. Sociological Methods and Research, 18, 416–441. First citation in articleCrossrefGoogle Scholar

  • Miller, D. J., Vachon, D. D. & Lynam, D. R. (2009). Neuroticism, negative affect, and negative affect instability: Establishing convergent and discriminant validity using ecological momentary assessment. Personality and Individual Differences, 47, 873–877. doi: 10.1016/j.paid.2009.07.007 First citation in articleCrossrefGoogle Scholar

  • Nesselroade, J. R. (2001). Intraindividual variability in the development within and between individuals. European Psychologist, 6, 187–193. doi: 10.1027/1016-9040.6.3.187 First citation in articleLinkGoogle Scholar

  • Oud, J. H. L. & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199–215. First citation in articleCrossrefGoogle Scholar

  • Oud, J. H. L. (2002). Continuous time modeling of the cross-lagged panel design. Kwantitatieve Methoden, 23, 1–26. First citation in articleGoogle Scholar

  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/ First citation in articleGoogle Scholar

  • Rijmen, F., Vansteelandt, K. & De Boeck, P. (2008). Latent class models for diary method data: Parameter estimation by local computations. Psychometrika, 73, 167–182. doi: 10.1007/s11336-007-9001-8 First citation in articleCrossrefGoogle Scholar

  • Singer, B. & Spilerman, S. (1976). The representation of social processes by Markov models. American Journal of Sociology, 82, 1–54. doi: 10.1086/226269 First citation in articleCrossrefGoogle Scholar

  • Steyer, R., Ferring, D. & Schmitt, M. (1992). States and traits in psychological assessment. European Journal of Psychological Assessment, 2, 79–98. First citation in articleGoogle Scholar

  • Steyer, R., Mayer, A., Geiser, C. & Cole, D. A. (2015). A theory of states and traits-revised. Annual Review of Clinical Psychology, 11, 71–98. doi: 10.1146/annurev-clinpsy-032813-153719 First citation in articleCrossrefGoogle Scholar

  • Steyer, R., Schmitt, M. & Eid, M. (1999). Latent state-trait theory and research in personality and individual differences. European Journal of Personality, 13, 389–408. First citation in articleCrossrefGoogle Scholar

  • Steyer, R., Schwenkmezger, P., Notz, P. & Eid, M. (1997). Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF) [The multidimensional Mood Questionnaire]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Vermunt, J. K. (2010). Longitudinal research using mixture models. In K. van MontfortJ. H. L. OudA. SatorraEds., Longitudinal research with latent variables (pp. 119–152). Heidelberg, Germany: Springer. First citation in articleGoogle Scholar

  • Vermunt, J. K. & Magidson, J. (2013). Technical guide for Latent GOLD 5.0: Basic, advanced, and syntax. Belmont, MA: Statistical Innovations Inc. First citation in articleGoogle Scholar

  • Vermunt, J. K., Tran, B. & Magidson, J. (2008). Latent class models in longitudinal research. In S. MenardEd., Handbook of longitudinal research: Design, measurement, and analysis (pp. 373–385). Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • Voelkle, M. C., Oud, J. H. L., Davidov, E. & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192. doi: 10.1037/a0027543 First citation in articleCrossrefGoogle Scholar