Skip to main content
Original Article

Manipulate Me

The Cube Construction Task Allows for a Better Manipulation of Item Difficulties Than Current Cube Rotation Tasks

Published Online:https://doi.org/10.1027/1015-5759/a000534

Abstract. The cube construction task represents a novel format in the assessment of spatial ability through mental cube rotation tasks. Instead of selecting the correct answer from several response options, respondents construct their own response in a computerized test environment, leading to a higher demand for spatial ability. In the present study with a sample of 146 German high-school students, we tested an approach to manipulate the item difficulties in order to create items with a greater difficulty range. Furthermore, we compared the cube task in a distractor-free and a distractor-based version while the item stems were held identical. The average item difficulty of the distractor-free format was significantly higher than in the distractor-based format (M = 0.27 vs. M = 0.46) and the distractor-free format showed a broader range of item difficulties (.02 ≤ pi ≤ .95 vs. .37 ≤ pi ≤ .63). The analyses of the test results also showed that the distractor-free format had a significantly higher correlation with a broad intelligence test (r = .57 vs. r = .17). Reasons for the higher convergent validity of the distractor-free format (prevention of response elimination strategies and the broader range of item difficulties) and further research possibilities are discussed.

References

  • Ackerman, P. L., Beier, M. E., & Boyle, M. D. (2002). Individual differences in working memory within a nomological network of cognitive and perceptual speed abilities. Journal of Experimental Psychology, 131, 567–589. https://doi.org/10.1037/0096-3445.131.4.567 First citation in articleCrossrefGoogle Scholar

  • Arendasy, M. E., & Sommer, M. (2013). Reducing response elimination strategies enhances the construct validity of figural matrices. Intelligence, 41, 234–243. https://doi.org/10.1016/j.intell.2013.03.006 First citation in articleCrossrefGoogle Scholar

  • Becker, N., Schmitz, F., Falk, A., Feldbrügge, J., Recktenwald, D., Wilhelm, O., … Spinath, F. (2016). Preventing response elimination strategies improves the convergent validity of figural matrices. Journal of Intelligence, 4, 2–15. https://doi.org/10.3390/jintelligence4010002 First citation in articleCrossrefGoogle Scholar

  • Bethell-Fox, C. E., Lohman, D., & Snow, R. E. (1984). Adaptive reasoning: Componential and eye movement analysis of geometric analogy performance. Intelligence, 8, 205–238. https://doi.org/10.1016/0160-2896(84)90009-6 First citation in articleCrossrefGoogle Scholar

  • Carroll, J. B. (1996). A three-stratum theory of intelligence: Spearman’s contribution. In I. DennisP. TapsfieldEds., Human abilities: Their nature and measurement (pp. 1–17). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Conway, A. R., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163–183. https://doi.org/10.1016/S0160-2896(01)00096-4 First citation in articleCrossrefGoogle Scholar

  • Embretson, S. (1994). Applications of cognitive design systems to test development. In C. R. ReynoldsEd., Cognitive assessment: a multidisciplinary perspective. New York, NY: Plenum Press. First citation in articleGoogle Scholar

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology, 128, 309–331. https://doi.org/10.1037/0096-3445.128.3.309 First citation in articleCrossrefGoogle Scholar

  • Gittler, G. (1990). Dreidimensionaler Würfeltest (3DW) [Three dimensional-Cube-Test]. Weinheim, Germany: Beltz. First citation in articleGoogle Scholar

  • Hayes, T. R., Petrov, A. A., & Sederberg, P. B. (2011). A novel method for analyzing sequential eye movements reveals strategic influence on Raven’s Advanced Progressive Matrices. Journal of Vision, 11, 1–11. https://doi.org/10.1167/11.10.10 First citation in articleCrossrefGoogle Scholar

  • Jäger, A. O., Süß, H.-M., & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test (BIS) [Berlin-Intelligence-Structure-Test]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Jarosz, A. F., & Wiley, J. (2012). Why does working memory capacity predict RAPM performance? A possible role of distraction. Intelligence, 40, 427–438. https://doi.org/10.1016/j.intell.2012.06.001 First citation in articleCrossrefGoogle Scholar

  • Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT: Praeger. First citation in articleGoogle Scholar

  • Krumm, S., Hüffmeier, J., & Lievens, F. (2017). Experimental test validation: Examining the path from test elements to test performance. European Journal of Psychological Assessment, 35, 225–232. https://doi.org/10.1027/1015-5759/a000393 First citation in articleLinkGoogle Scholar

  • Levene, H. (1960). Robust tests for equality of variances. In I. OlkinsEd., Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (pp. 278–292). Stanford, CA: Stanford University Press. First citation in articleGoogle Scholar

  • Liepmann, D., Beauducel, A., Brocke, B., & Amthauer, R. (2007). Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R) [Intelligence-Structure-Test 2000 R]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Liepmann, D., Beauducel, A., Brocke, B., & Nettelnstroth, W. (2012). Intelligenz-Struktur-Test Screening (IST Screening) [Intelligence-structure-test screening]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498. https://doi.org/10.2307/1130467 First citation in articleCrossrefGoogle Scholar

  • Lohman, D. F. (1979). Spatial ability: A review and re-analysis of the correlational literature (Technical Report No. 8). Stanford, CA: Aptitudes Research Project, School of Education, Stanford University. First citation in articleGoogle Scholar

  • Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. SternbergEd., Advances in the psychology of human intelligence (Vol. 4, pp. 181–248). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Lohman, D. F. (1996). Spatial ability and g. In I. DennisP. TapsfieldEds., Human abilities: Their nature and measurement (pp. 97–116). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107–127. https://doi.org/10.1016/0160-2896(83)90023-5 First citation in articleCrossrefGoogle Scholar

  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1–10. https://doi.org/10.1016/j.intell.2008.08.004 First citation in articleCrossrefGoogle Scholar

  • Millsap, R. E., Zalkind, S. S., & Xenos, T. (1990). Quick-reference tables to determine the significance of the difference between two correlation coefficients from two independent samples. Educational and Psychololgical Measurement, 50, 297–307. https://doi.org/10.1177/0013164490502008 First citation in articleCrossrefGoogle Scholar

  • Mittring, G., & Rost, D. H. (2008). Die verflixten Distraktoren: Über den Nutzen einer theoretischen Distraktorenanalyse bei Matrizentests (für besser Begabte und Hochbegabte) [The nasty distractors. On the utility of a notional distractor analysis of items of matrices-test for the highly gifted]. Diagnostica, 54, 193–201. https://doi.org/10.1026/0012-1924.54.4.193 First citation in articleLinkGoogle Scholar

  • Raven, J. C., Raven, J., & Court, J. H. (1998). A manual for Raven’s progressive matrices and vocabulary scales. London, UK: H. K. Lewis. First citation in articleGoogle Scholar

  • Robinson, N. M., & Janos, P. M. (1987). The contribution of intelligence tests to the understanding of special children. In J. D. DayJ. B. BorkowskiEds., Intelligence and exceptionality: New directions for theory, assessment, and instructional practices (pp. 21–56). Norwood, NJ: Ablex. First citation in articleGoogle Scholar

  • Snow, R. E., Kyllonen, P. C., & Marshalek, B. (1984). The topography of ability and learning correlations. In R. J. SternbergEd., Advances in the psychology of human intelligence (Vol. 2, pp. 47–103). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Süß, H.-M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-memory capacity explains reasoning ability–and a little bit more. Intelligence, 30, 261–288. https://doi.org/10.1016/S0160-2896(01)00100-3 First citation in articleCrossrefGoogle Scholar

  • Thissen, A., Koch, M., Becker, N., & Spinath, F. M. (2016). Construct your own response: The cube construction task as a novel format for the assessment of spatial ability. European Journal of Psychological Assessment, 34, 304–311. https://doi.org/10.1027/1015-5759/a000342 First citation in articleLinkGoogle Scholar

  • Vernon, P. E. (1961). The structure of human abilities (2nd ed.). London, UK: Methuen. First citation in articleGoogle Scholar

  • Vigneau, F., Caissie, A. F., & Bors, D. A. (2006). Eye-movement analysis demonstrates strategic influences on intelligence. Intelligence, 34, 261–272. https://doi.org/10.1016/j.intell.2005.11.003 First citation in articleCrossrefGoogle Scholar

  • Wilhelm, O., & Schulze, R. (2002). The relation of speeded and unspeeded reasoning with mental speed. Intelligence, 30, 537–554. https://doi.org/10.1016/S0160-2896(02)00086-7 First citation in articleCrossrefGoogle Scholar