Skip to main content
Free AccessOriginal Articles and Reviews

Transcranial Electrical Stimulation in Post-Stroke Cognitive Rehabilitation

Where We Are and Where We Are Going

Published Online:https://doi.org/10.1027/1016-9040/a000238

Abstract. Cognitive rehabilitation is an important area of neurological rehabilitation, which aims at the treatment of cognitive disorders due to acquired brain damage of different etiology, including stroke. Although the importance of cognitive rehabilitation for stroke survivors is well recognized, available cognitive treatments for neuropsychological disorders, such as spatial neglect, hemianopia, apraxia, and working memory, are overall still unsatisfactory. The growing body of evidence supporting the potential of the transcranial Electrical Stimulation (tES) as tool for interacting with neuroplasticity in the human brain, in turn for enhancing perceptual and cognitive functions, has obvious implications for the translation of this noninvasive brain stimulation technique into clinical settings, in particular for the development of tES as adjuvant tool for cognitive rehabilitation. The present review aims at presenting the current state of art concerning the use of tES for the improvement of post-stroke visual and cognitive deficits (except for aphasia and memory disorders), showing the therapeutic promises of this technique and offering some suggestions for the design of future clinical trials. Although this line of research is still in infancy, as compared to the progresses made in the last years in other neurorehabilitation domains, current findings appear very encouraging, supporting the development of tES for the treatment of post-stroke cognitive impairments.

References

  • Barbieri, C. & De Renzi, E. (1988). The executive and ideational components of apraxia. Cortex, 24, 535–543. First citation in articleCrossrefGoogle Scholar

  • Berlucchi, G. & Aglioti, S. (1997). The body in the brain: Neural bases of corporeal awareness. Trends in Neurosciences, 20, 560–564. First citation in articleCrossrefGoogle Scholar

  • Bliss, T. V. P. & Cooke, S. F. (2011). Long-term potentiation and long-term depression: A clinical perspective. Clinics, 66, 3–17. First citation in articleCrossrefGoogle Scholar

  • Boggio, P. S., Ferrucci, R., Rigonatti, S. P., Covre, P., Nitsche, M., Pascual-Leone, A. & Fregni, F. (2006). Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. Journal of the Neurological Sciences, 249, 31–38. First citation in articleCrossrefGoogle Scholar

  • Bolognini, N., Convento, S., Banco, E., Mattioli, F., Tesio, L. & Vallar, G. (2015). Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex. Brain, 138, 428–439. First citation in articleCrossrefGoogle Scholar

  • Bolognini, N., Convento, S., Rossetti, A. & Merabet, L. B. (2013). Multisensory processing after a brain damage: Clues on post-injury crossmodal plasticity from neuropsychology. Neuroscience & Biobehavioral Reviews, 37, 269–278. First citation in articleCrossrefGoogle Scholar

  • Bolognini, N., Olgiati, E., Maravita, A., Ferraro, F. & Fregni, F. (2013). Motor and parietal cortex stimulation for phantom limb pain and sensations. Pain, 154, 1274–1280. First citation in articleCrossrefGoogle Scholar

  • Bolognini, N., Pascual-Leone, A. & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of Neuroengineering and Rehabilitation, 6, 8. First citation in articleCrossrefGoogle Scholar

  • Bolognini, N., Vallar, G., Casati, C., Latif, L. A., El-Nazer, R., Williams, J., … Fregni, F. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabilitation and Neural Repair, 25, 819–829. First citation in articleCrossrefGoogle Scholar

  • Bowen, A., Hazelton, C., Pollock, A. & Lincoln, N. B. (2013). Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database of Systematic Reviews, 7, CD003586. First citation in articleGoogle Scholar

  • Brem, A. K., Unterburger, E., Speight, I. & Jäncke, L. (2014). Treatment of visuospatial neglect with biparietal tDCS and cognitive training: A single-case study. Frontiers in Systems Neuroscience, 8, 1–9. First citation in articleCrossrefGoogle Scholar

  • Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G. & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. The International Journal of Neuropsychopharmacology, 14, 1133–1145. First citation in articleCrossrefGoogle Scholar

  • Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., … Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5, 175–195. First citation in articleCrossrefGoogle Scholar

  • Bueno, V. F., Brunoni, A. R., Boggio, P. S., Bensenor, I. M. & Fregni, F. (2011). Mood and cognitive effects of transcranial direct current stimulation in post-stroke depression. Neurocase, 17, 318–322. First citation in articleCrossrefGoogle Scholar

  • Cantagallo, A., Maini, M. & Rumiati, R. I. (2012). The cognitive rehabilitation of limb apraxia in patients with stroke. Neuropsychological Rehabilitation, 22, 473–488. First citation in articleCrossrefGoogle Scholar

  • Cicerone, K. D., Dahlberg, C., Malec, J. F., Langenbahn, D. M., Felicetti, T., Kneipp, S., … Catanese, J. (2005). Evidence-based cognitive rehabilitation: Updated review of the literature from 1998 through 2002. Archives of Physical Medicine and Rehabilitation, 86, 1681–1692. First citation in articleCrossrefGoogle Scholar

  • Cohen Kadosh, R. (2014). The stimulated brain: Cognitive enhancement using non-invasive brain stimulation. London, UK: Academic Press. First citation in articleGoogle Scholar

  • Convento, S., Bolognini, N., Fusaro, M., Lollo, F. & Vallar, G. (2014). Neuromodulation of parietal and motor activity affects motor planning and execution. Cortex, 57, 51–59. First citation in articleCrossrefGoogle Scholar

  • das Nair, R. & Lincoln, N. (2007). Cognitive rehabilitation for memory deficits following stroke. Cochrane Database of Systematic Reviews, 3, CD002293. First citation in articleGoogle Scholar

  • D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K. & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1–13. First citation in articleCrossrefGoogle Scholar

  • Di Monaco, M., Schintu, S., Dotta, M., Barba, S., Tappero, R. & Gindri, P. (2011). Severity of unilateral spatial neglect is an independent predictor of functional outcome after acute inpatient rehabilitation in individuals with right hemispheric stroke. Archives of Physical Medicine and Rehabilitation, 92, 1250–1256. First citation in articleCrossrefGoogle Scholar

  • Dockery, C. A., Hueckel-Weng, R., Birbaumer, N. & Plewnia, C. (2009). Enhancement of planning ability by transcranial direct current stimulation. The Journal of Neuroscience, 29, 7271–7277. First citation in articleCrossrefGoogle Scholar

  • Elliott, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59. First citation in articleCrossrefGoogle Scholar

  • Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Théoret, H., Boggio, P. S. & Fregni, F. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. The Journal of Neuroscience, 27, 6212–6218. First citation in articleCrossrefGoogle Scholar

  • Filmer, H. L., Mattingley, J. B. & Dux, P. E. (2013). Improved multitasking following prefrontal tDCS. Cortex, 49, 2845–2852. First citation in articleCrossrefGoogle Scholar

  • Flor, H., Nikolajsen, L. & Jensen, T. S. (2006). Phantom limb pain: A case of maladaptive CNS plasticity? Nature Reviews Neuroscience, 7, 873–881. First citation in articleCrossrefGoogle Scholar

  • Fregni, F., Boggio, P. S., Nitsche, M., Bermpohl, F., Antal, A., Feredoes, E., … Pascual-Leone, A. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23–30. First citation in articleCrossrefGoogle Scholar

  • Fregni, F., Nitsche, M. A., Loo, C. K., Brunoni, A. R., Marangolo, P., Leite, J., … Bikson, M. (2015). Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel. Clinical Research and Regulatory Affairs, 32, 22–35. First citation in articleCrossrefGoogle Scholar

  • Fregni, F. & Pascual-Leone, A. (2007). Technology insight: Noninvasive brain stimulation in neurology – Perspectives on the therapeutic potential of rTMS and tDCS. Nature Clinical Practice Neurology, 3, 383–393. First citation in articleCrossrefGoogle Scholar

  • Fuster, J. M. (2000). The module: Crisis of a paradigm. Neuron, 26, 51–53. First citation in articleCrossrefGoogle Scholar

  • Goodwin, D. (2014). Homonymous hemianopia: Challenges and solutions. Clinical Ophthalmology, 8, 1919–1927. First citation in articleCrossrefGoogle Scholar

  • Halko, M. A., Datta, A., Plow, E. B., Scaturro, J., Bikson, M. & Merabet, L. B. (2011). Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage, 57, 885–891. First citation in articleCrossrefGoogle Scholar

  • He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L. & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53, 905–918. First citation in articleCrossrefGoogle Scholar

  • Heilman, K. M. & Rothi, L. J. (1993). Apraxia. In K. M. HeilmanE. ValensteinEds., Clinical Neuropsychology (3rd ed., pp. 141–163). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Hesse, M. D., Sparing, R. & Fink, G. R. (2011). Ameliorating spatial neglect with non-invasive brain stimulation: From pathophysiological concepts to novel treatment strategies. Neuropsychological Rehabilitation, 21, 676–702. First citation in articleCrossrefGoogle Scholar

  • Hesse, S., Werner, C., Schonhardt, E. M., Bardeleben, A., Jenrich, W. & Kirker, S. G. B. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology & Neuroscience, 25, 9–15. First citation in articleGoogle Scholar

  • Hunter, J. P., Katz, J. & Davis, K. D. (2003). The effect of tactile and visual sensory inputs on phantom limb awareness. Brain, 126, 579–589. First citation in articleCrossrefGoogle Scholar

  • Jo, J. M., Kim, Y. H., Ko, M. H., Ohn, S. H., Joen, B. & Lee, K. H. (2009). Enhancing the working memory of stroke patients using tDCS. American Journal of Physical Medicine & Rehabilitation, 88, 404–409. First citation in articleCrossrefGoogle Scholar

  • Jung, I. Y., Lim, J. Y., Kang, E. K., Sohn, H. M. & Paik, N. J. (2011). The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Annals of Rehabilitation Medicine, 35, 460–469. First citation in articleCrossrefGoogle Scholar

  • Kang, E. K., Baek, M. J., Kim, S. & Paik, N. J. (2009). Non-invasive cortical stimulation improves post-stroke attention decline. Restorative Neurology and Neuroscience, 27, 647–652. First citation in articleGoogle Scholar

  • Kasten, E., Wüst, S., Behrens-Baumann, W. & Sabel, B. A. (1998). Computer-based training for the treatment of partial blindness. Nature Medicine, 4, 1083–1087. First citation in articleCrossrefGoogle Scholar

  • Kew, J. J. M., Ridding, M. C., Rothwell, J. C., Passingham, R. E., Leigh, P. N., Sooriakumaran, S., … Brooks, D.J. (1994). Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. Journal of Neurophysiology, 72, 2517–2524. First citation in articleGoogle Scholar

  • Kinsbourne, M. (1987). Mechanisms of Unilateral Neglect. In M. JeannerodEd., Neurophysiological and Neuropsychological Aspects of Spatial Neglect (pp. 69–86). Amsterdam, The Netherlands: Elsevier Science. First citation in articleGoogle Scholar

  • Ko, M. H., Han, S. H., Park, S. H., Seo, J. H. & Kim, Y. H. (2008). Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neuroscience Letters, 448, 171–174. First citation in articleCrossrefGoogle Scholar

  • Liepmann, H. (1977). The syndrome of apraxia (motor asymboly) based on a case of unilateral apraxia. In D. A. RottenbergF. H. HochbergEds., Neurological classics in modern translation (pp. 155–181). New York, NY: Haffner Press. First citation in articleGoogle Scholar

  • Loetscher, T. & Lincoln, N. B. (2013). Cognitive rehabilitation for attention deficits following stroke. Cochrane Database of Systematic Reviews, 5, CD002842. First citation in articleGoogle Scholar

  • Luft, C. D., Pereda, E., Banissy, M. J. & Bhattacharya, J. (2014). Best of both worlds: Promise of combining brain stimulation and brain connectome. Frontiers in System Neuroscience, 8, 132. First citation in articleCrossrefGoogle Scholar

  • Marangolo, P., Fiori, V., Cipollari, S., Campana, S., Razzano, C., Di Paola, M., … Caltagirone, C. (2013). Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. European Journal of Neuroscience, 38, 3370–3377. First citation in articleCrossrefGoogle Scholar

  • Marangolo, P., Marinelli, C. V., Bonifazi, S., Fiori, V., Ceravolo, M. G., Provinciali, L. & Tomaiuolo, F. (2011). Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behavioural Brain Research, 225, 498–504. First citation in articleCrossrefGoogle Scholar

  • Marquez, J., van Vliet, P., McElduff, P., Lagopoulos, J. & Parsons, M. (2015). Transcranial direct current stimulation (tDCS): Does it have merit in stroke rehabilitation? A systematic review. International Journal of Stroke, 10, 306–316. First citation in articleCrossrefGoogle Scholar

  • Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. First citation in articleCrossrefGoogle Scholar

  • Miniussi, C., Cappa, S. F., Cohen, L. G., Floel, A., Fregni, F., Nitsche, M. A., … Walsh, V. (2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain Stimulation, 1, 326–336. First citation in articleCrossrefGoogle Scholar

  • Miniussi, C. & Vallar, G. (2011). Brain stimulation and behavioural cognitive rehabilitation: A new tool for neurorehabilitation? Neuropsychological Rehabilitation, 21, 553–559. First citation in articleCrossrefGoogle Scholar

  • Munoz-Cespedes, J. M., Rios-Lago, M., Paul, N. & Maestu, F. (2005). Functional neuroimaging studies of cognitive recovery after acquired brain damage in adults. Neuropsychology Review, 15, 169–183. First citation in articleCrossrefGoogle Scholar

  • Nahum, M., Lee, H. & Merzenich, M. M. (2013). Principles of neuroplasticity-based rehabilitation. Progress in Brain Research, 207, 141–171. First citation in articleCrossrefGoogle Scholar

  • Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S. & Parasuraman, R. (2014). Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). Neuroimage, 85, 909–917. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206–223. First citation in articleCrossrefGoogle Scholar

  • Nudo, R. (2003). Adaptive plasticity in motor cortex: Implications for rehabilitation after brain injury. Journal of Rehabilitation Medicine, 41, 7–10. First citation in articleCrossrefGoogle Scholar

  • Olma, M. C., Dargie, R. A., Behrens, J. R., Kraft, A., Irlbacher, K., Fahle, M. & Brandt, S. A. (2013). Long-term effects of serial anodal tDCS on motion perception in subjects with occipital stroke measured in the unaffected visual hemifield. Frontiers in Human Neuroscience, 7, 314. First citation in articleCrossrefGoogle Scholar

  • Pascual-Leone, A., Amedi, A., Fregni, F. & Merabet, L. B. (2005). The plastic human brain cortex. Annual Review of Neuroscience, 28, 377–401. First citation in articleCrossrefGoogle Scholar

  • Paulus, W. (2011). Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21, 602–617. First citation in articleCrossrefGoogle Scholar

  • Plow, E. B., Obretenova, S. N., Fregni, F., Pascual-Leone, A. & Merabet, L. B. (2012). Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabilitation and Neural Repair, 26, 616–626. First citation in articleCrossrefGoogle Scholar

  • Plow, E. B., Obretenova, S. N., Jackson, M. L. & Merabet, L. B. (2012). Temporal profile of functional visual rehabilitative outcomes modulated by transcranial direct current stimulation. Neuromodulation, 15, 367–373. First citation in articleCrossrefGoogle Scholar

  • Pollock, A., Hazelton, C., Henderson, C. A., Angilley, J., Dhillon, B., Langhorne, P., … Shahani, U. (2011). Interventions for visual field defects in patients with stroke. Cochrane Database of Systematic Reviews, 10, CD008389. First citation in articleGoogle Scholar

  • Price, C. J., Mummery, C. J., Moore, C. J., Frackowiak, R. S. J. & Friston, K. J. (1999). Delineating necessary and sufficient neural systems with functional imaging studies of neuropsychological patients. Journal of Cognitive Neuroscience, 11, 371–382. First citation in articleCrossrefGoogle Scholar

  • Romero Lauro, L. J., Rosanova, M., Mattavelli, G., Convento, S., Pisoni, A., Opitz, A., … Vallar, G. (2014). Anodal transcranial direct current stimulation (tDCS) increases cortical excitability: Direct evidence from TMS-EEG. Cortex, 58, 99–111. First citation in articleCrossrefGoogle Scholar

  • Sabel, B. A. & Kasten, E. (2000). Restoration of vision by training of residual functions. Current Opinion in Ophthalmology, 11, 430–436. First citation in articleCrossrefGoogle Scholar

  • Sandrini, M. & Cohen, L. G. (2013). Noninvasive brain stimulation in neurorehabilitation. Handbook of Clinical Neurolology, 116, 499–524. First citation in articleCrossrefGoogle Scholar

  • Smania, N., Aglioti, S. M., Girardi, F., Tinazzi, M., Fiaschi, A., Cosentino, A. & Corato, E. (2006). Rehabilitation of limb apraxia improves daily life activities in patients with stroke. Neurology, 67, 2050–2052. First citation in articleCrossrefGoogle Scholar

  • Sparing, R., Thimm, M., Hesse, M. D., Küst, J., Karbe, H. & Fink, G. R. (2009). Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain, 132, 3011–3020. First citation in articleCrossrefGoogle Scholar

  • Sporns, O. (2014). Contributions and challenges for network models in cognitive neuroscience. Nature Neuroscience, 17, 652–660. First citation in articleCrossrefGoogle Scholar

  • Stapleton, T., Ashburn, A. & Stack, E. (2001). A pilot study of attention deficits, balance control and falls in the subacute stage following stroke. Clinical Rehabilitation, 15, 437–444. First citation in articleCrossrefGoogle Scholar

  • Stuss, D. T., Winocur, G. & Robertson, I. H. (2008). Cognitive neurorehabilitation (2nd ed.). Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Sunwoo, H., Kim, Y. H., Chang, W. H., Noh, S., Kim, E. J. & Ko, M. H. (2013). Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neuroscience Letters, 554, 94–98. First citation in articleCrossrefGoogle Scholar

  • Vallar, G. & Bolognini, N. (2011). Behavioural facilitation following brain stimulation: Implications for neurorehabilitation. Neuropsychological Rehabilitation, 21, 618–649. First citation in articleCrossrefGoogle Scholar

  • Vallar, G. & Bolognini, N. (2014). Unilateral spatial neglect. In A. C. NobreS. KastnerEds., The Oxford Handbook of Attention (pp. 972–1025). Oxford, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Vallar, G. & Ronchi, R. (2009). Somatoparaphrenia: A body delusion. A review of the neuropsychological literature. Experimental Brain Research, 192, 533–551. First citation in articleCrossrefGoogle Scholar

  • Veniero, D., Bortoletto, M. & Miniussi, C. (2014). On the challenge of measuring direct cortical reactivity by TMS-EEG. Brain Stimulation, 7, 759–760. First citation in articleCrossrefGoogle Scholar

  • Vines, B. W., Cerruti, C. & Schlaug, G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neuroscience, 9, 103. First citation in articleCrossrefGoogle Scholar

  • Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M. & Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. Neuroimage, 35, 1113–1124. First citation in articleCrossrefGoogle Scholar

  • Wertz, R. T., Lapointe, L. L. & Rosenbek, J. C. (1984). Apraxia of speech in adults: The disorders and its management. Orlando, FL: Grune and Stratton. First citation in articleGoogle Scholar

  • West, C., Bowen, A., Hesketh, A. & Vail, A. (2008). Interventions for motor apraxia following stroke. Cochrane Database of Systematic Reviews, 1, CD004132. First citation in articleGoogle Scholar

  • Wheaton, L. A. & Hallett, M. (2007). Ideomotor apraxia: A review. Journal of Neurological Sciences, 260, 1–10. First citation in articleCrossrefGoogle Scholar

  • Zhang, X., Kedar, S., Lynn, M. J., Newman, N. J. & Biousse, V. (2006). Natural history of homonymous hemianopia. Neurology, 66, 901–905. First citation in articleCrossrefGoogle Scholar