Skip to main content
Free AccessOriginal Articles and Reviews

Social Psychology and Noninvasive Electrical Stimulation

A Promising Marriage

Published Online:https://doi.org/10.1027/1016-9040/a000247

Abstract. Social neuroscience and psychology have made substantial advances in the last few decades. Nonetheless, the field has relied mostly on behavioral, imaging, and other correlational research methods. Here we argue that transcranial direct current stimulation (tDCS) is an effective and relevant technique to be used in this field of research, allowing for the establishment of more causal brain-behavior relationships than can be achieved with most of the techniques used in this field. We review relevant brain stimulation-aided research in the fields of social pain, social interaction, prejudice, and social decision-making, with a special focus on tDCS. Despite the fact that the use of tDCS in Social Neuroscience and Psychology studies is still in its early days, results are promising. As better understanding of the processes behind social cognition becomes increasingly necessary due to political, clinical, and even philosophical demands, the fact that tDCS is arguably rare in Social Neuroscience research is very noteworthy. This review aims at inspiring researchers to employ tDCS in the investigation of issues within Social Neuroscience. We present substantial evidence that tDCS is indeed an appropriate tool for this purpose.

References

  • Abler, B., Walter, H., Wunderlich, A., Grothe, J., Schönfeldt-Lecuona, C., Spitzer, M. & Herwig, U. (2005). Side effects of transcranial magnetic stimulation biased task performance in a cognitive neuroscience study. Brain Topography, 17, 193–196. First citation in articleCrossrefGoogle Scholar

  • Amodio, D. M., Harmon-Jones, E., Devine, P. G., Curtin, J. J., Hartley, S. L. & Covert, A. E. (2004). Neural signals for the detection of unintentional race bias. Psychological Science, 15, 88–93. First citation in articleCrossrefGoogle Scholar

  • Anderson, B. S., Kavanagh, K., Borckardt, J. J., Nahas, Z. H., Kose, S., Lisanby, S. H., … George, M. S. (2009). Decreasing procedural pain over time of left prefrontal rtms for depression: Initial results from the open-label phase of a multisite trial (OPT-TMS). Brain Stimulation, 2, 88–92. First citation in articleCrossrefGoogle Scholar

  • Bechara, A. (2004). The role of emotion in decision-making: Evidence from neurological patients with orbitofrontal damage. Brain and Cognition, 55, 30–40. First citation in articleCrossrefGoogle Scholar

  • Boggio, P. S., Rocha, R. R., da Silva, M. T. & Fregni, F. (2008). Differential modulatory effects of transcranial direct current stimulation on a facial expression go-no-go task in males and females. Neuroscience Letters, 447, 101–105. First citation in articleCrossrefGoogle Scholar

  • Boggio, P. S., Zaghi, S. & Fregni, F. (2009). Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS). Neuropsychologia, 47, 212–217. First citation in articleCrossrefGoogle Scholar

  • Boggio, P. S., Zaghi, S., Lopes, M. & Fregni, F. (2008). Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. European Journal of Neurology, 15, 1124–1130. First citation in articleCrossrefGoogle Scholar

  • Bolognini, N., Miniussi, C., Gallo, S. & Vallar, G. (2013). Induction of mirror-touch synaesthesia by increasing somatosensory cortical excitability. Current Biology, 23, R436–R437. First citation in articleGoogle Scholar

  • Brent, L. J., Chang, S. W., Gariépy, J. F. & Platt, M. L. (2014). The neuroethology of friendship. Annals of the New York Academy of Sciences, 1316, 1–17. First citation in articleCrossrefGoogle Scholar

  • Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G. & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology, 14, 1133–1145. First citation in articleCrossrefGoogle Scholar

  • Brunoni, A. R., Boggio, P. S., Ferrucci, R., Priori, A. & Fregni, F. (2013). Transcranial direct current stimulation: Challenges, opportunities, and impact on psychiatry and neurorehabilitation. Frontiers in Psychiatry, 4, 1–3. doi: 10.3389/fpsyt.2013.00019 First citation in articleCrossrefGoogle Scholar

  • Brunoni, A. R., Nitsche, M. A., Bolognini, N., Bikson, M., Wagner, T., Merabet, L., … Fregni, F. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5, 175–195. First citation in articleCrossrefGoogle Scholar

  • Brunoni, A. R., Valiengo, L., Baccaro, A., Zanao, T. A., de Oliveira, J. F., Goulart, A., … Fregni, F. (2013). The sertraline vs. electrical current therapy for treating depression clinical study: Results from a factorial, randomized, controlled trial. JAMA Psychiatry, 70, 383–391. First citation in articleCrossrefGoogle Scholar

  • Cacioppo, J. T. & Berntson, G. G. (1992). Social psychological contributions to the decade of the brain: Doctrine of multilevel analysis. The American Psychologist, 47, 1019 First citation in articleCrossrefGoogle Scholar

  • Cattaneo, Z., Mattavelli, G., Platania, E. & Papagno, C. (2011). The role of the prefrontal cortex in controlling gender-stereotypical associations: A TMS investigation. NeuroImage, 56, 1839–1846. First citation in articleCrossrefGoogle Scholar

  • Civai, C., Crescentini, C., Rustichini, A. & Rumiati, R. I. (2012). Equality versus self-interest in the brain: Differential roles of anterior insula and medial prefrontal cortex. NeuroImage, 62, 102–112. First citation in articleCrossrefGoogle Scholar

  • Civai, C., Miniussi, C. & Rumiati, R. I. (2014). Medial prefrontal cortex reacts to unfairness if this damages the self: A tDCS study. Social Cognitive and Affective Neuroscience, 10, 1054–1060. First citation in articleCrossrefGoogle Scholar

  • Coan, J. A. & Allen, J. J. (2004). Frontal EEG asymmetry as a moderator and mediator of emotion. Biological Psychology, 67, 7–50. First citation in articleCrossrefGoogle Scholar

  • Crescentini, C., Aglioti, S. M., Fabbro, F. & Urgesi, C. (2014). Virtual lesions of the inferior parietal cortex induce fast changes of implicit religiousness/spirituality. Cortex, 54, 1–15. First citation in articleCrossrefGoogle Scholar

  • Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1105. First citation in articleCrossrefGoogle Scholar

  • Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S. & Sack, A. T. (2015). Reducing proactive aggression through non-invasive brain stimulation. Social Cognitive and Affective Neuroscience, 10, 1303–1309. doi: 10.1093/scan/nsv018 First citation in articleCrossrefGoogle Scholar

  • DeVries, A. C., Glasper, E. R. & Detillion, C. E. (2003). Social modulation of stress responses. Physiology & Behavior, 79, 399–407. First citation in articleCrossrefGoogle Scholar

  • Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E. M. & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 74, 266–275. First citation in articleCrossrefGoogle Scholar

  • Eisenberger, N. I. (2012). The pain of social disconnection: Examining the shared neural underpinnings of physical and social pain. Nature Reviews: Neuroscience, 13, 421–434. First citation in articleCrossrefGoogle Scholar

  • Feeser, M., Prehn, K., Kazzer, P., Mungee, A. & Bajbouj, M. (2014). Transcranial direct current stimulation enhances cognitive control during emotion regulation. Brain Stimulation, 7, 105–112. First citation in articleCrossrefGoogle Scholar

  • Ferrucci, R., Giannicola, G., Rosa, M., Fumagalli, M., Boggio, P. S., Hallett, M., … Priori, A. (2012). Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognition & Emotion, 26, 786–799. First citation in articleCrossrefGoogle Scholar

  • Ferrucci, R., Marceglia, S., Vergari, M., Cogiamanian, F., Mrakic-Sposta, S., Mameli, F., … Priori, A. (2008). Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. Journal of Cognitive Neuroscience, 20, 1687–1697. First citation in articleCrossrefGoogle Scholar

  • Filmer, H. L., Dux, P. E. & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37, 742–753. First citation in articleCrossrefGoogle Scholar

  • Fregni, F., Liguori, P., Fecteau, S., Nitsche, M. A., Pascual-Leone, A. & Boggio, P. S. (2008). Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: A randomized, sham-controlled study. Journal of Clinical Psychiatry, 69, 32–40. First citation in articleCrossrefGoogle Scholar

  • Gladwin, T. E., den Uyl, T. E. & Wiers, R. W. (2012). Anodal tDCS of dorsolateral prefontal cortex during an Implicit Association Test. Neuroscience Letters, 517, 82–86. First citation in articleCrossrefGoogle Scholar

  • Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74, 1464. First citation in articleCrossrefGoogle Scholar

  • Harmer, C. J., Thilo, K. V., Rothwell, J. C. & Goodwin, G. M. (2001). Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nature Neuroscience, 4, 17–18. First citation in articleCrossrefGoogle Scholar

  • Hétu, S., Taschereau-Dumouchel, V. & Jackson, P. L. (2012). Stimulating the brain to study social interactions and empathy. Brain Stimulation, 5, 95–102. First citation in articleCrossrefGoogle Scholar

  • Hillis, A. E. (2014). Inability to empathize: Brain lesions that disrupt sharing and understanding another’s emotions. Brain, 137, 981–997. First citation in articleCrossrefGoogle Scholar

  • Hogeveen, J., Obhi, S. S., Banissy, M. J., Santiesteban, I., Press, C., Catmur, C. & Bird, G. (2014). Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation. Social Cognitive and Affective Neuroscience, 10, 1003–1009. First citation in articleCrossrefGoogle Scholar

  • Just, M. A., Cherkassky, V. L., Buchweitz, A., Keller, T. A. & Mitchell, T. M. (2014). Identifying autism from neural representations of social interactions: Neurocognitive markers of autism. PLoS One, 9, e113879. First citation in articleGoogle Scholar

  • Kelley, N. J., Hortensius, R. & Harmon-Jones, E. (2013). When anger leads to rumination induction of relative right frontal cortical activity with transcranial direct current stimulation increases anger-related rumination. Psychological Science, 24, 475–481. First citation in articleCrossrefGoogle Scholar

  • Knoch, D. & Fehr, E. (2007). Resisting the power of temptations. Annals of the New York Academy of Sciences, 1104, 123–134. First citation in articleCrossrefGoogle Scholar

  • Knoch, D., Gianotti, L. R., Pascual-Leone, A., Treyer, V., Regard, M., Hohmann, M. & Brugger, P. (2006). Disruption of right prefrontal cortex by low-frequency repetitive transcranial magnetic stimulation induces risk-taking behavior. The Journal of Neuroscience, 26, 6469–6472. First citation in articleCrossrefGoogle Scholar

  • Knoch, D., Nitsche, M. A., Fischbacher, U., Eisenegger, C., Pascual-Leone, A. & Fehr, E. (2008). Studying the neurobiology of social interaction with transcranial direct current stimulation – the example of punishing unfairness. Cerebral Cortex, 18, 1987–1990. First citation in articleCrossrefGoogle Scholar

  • Kubota, J. T., Banaji, M. R. & Phelps, E. A. (2012). The neuroscience of race. Nature Neuroscience, 15, 940–948. First citation in articleCrossrefGoogle Scholar

  • Lamm, C., Decety, J. & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 2492–2502. First citation in articleCrossrefGoogle Scholar

  • Lieberman, M. D. & Eisenberger, N. I. (2006). A pain by any other name (rejection, exclusion, ostracism) still hurts the same: The role of dorsal anterior cingulate cortex in social and physical pain. Social Neuroscience: People Thinking About Thinking People, 1, 169–187. First citation in articleGoogle Scholar

  • Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289. First citation in articleCrossrefGoogle Scholar

  • Loewenstein, G., Rick, S. & Cohen, J. D. (2008). Neuroeconomics. Annual Review of Psychology, 59, 647–672. First citation in articleCrossrefGoogle Scholar

  • Loo, C. K., McFarquhar, T. F. & Mitchell, P. B. (2008). A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. International Journal of Neuropsychopharmacology, 11, 131–147. First citation in articleGoogle Scholar

  • Macmillan, M. (2008). Phineas Gage-unravelling the myth. The Psychologist, 21, 828–831. First citation in articleGoogle Scholar

  • Masten, C. L., Morelli, S. A. & Eisenberger, N. I. (2011). An fMRI investigation of empathy for “social pain” and subsequent prosocial behavior. NeuroImage, 55, 381–388. First citation in articleCrossrefGoogle Scholar

  • Medeiros, L. F., de Souza, I. C. C., Vidor, L. P., de Souza, A., Deitos, A., Volz, M. S., … Torres, I. L. (2012). Neurobiological effects of transcranial direct current stimulation: A review. Frontiers in Psychiatry, 3, 1–11. doi: 10.3389/fpsyt.2012.00110 First citation in articleCrossrefGoogle Scholar

  • Miniussi, C., Harris, J. A. & Ruzzolid, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience and Biobehavioral Reviews, 37, 1702–1712. First citation in articleCrossrefGoogle Scholar

  • Mori, F., Codecà, C., Kusayanagi, H., Monteleone, F., Buttari, F., Fiore, S., … Centonze, D. (2010). Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis. The Journal of Pain, 11, 436–442. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., … Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1, 206–223. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Koschack, J., Pohlers, H., Hullemann, S., Paulus, W. & Happe, S. (2012). Effects of frontal transcranial direct current stimulation on emotional state and processing in healthy humans. Frontiers in Psychiatry, 3, 1–10. First citation in articleCrossrefGoogle Scholar

  • Nitsche, M. A., Liebetanz, D., Schlitterlau, A., Henschke, U., Fricke, K., Frommann, K., … Tergau, F. (2004). GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. European Journal of Neuroscience, 19, 2720–2726. First citation in articleCrossrefGoogle Scholar

  • Ochsner, K. N., Silvers, J. A. & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E1–E24. First citation in articleCrossrefGoogle Scholar

  • Pascual-Leone, A., Walsh, V. & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10, 232–237. First citation in articleCrossrefGoogle Scholar

  • Peña-Gómez, C., Vidal-Piñeiro, D., Clemente, I. C., Pascual-Leone, Á. & Bartrés-Faz, D. (2011). Down-regulation of negative emotional processing by transcranial direct current stimulation: Effects of personality characteristics. PLoS One, 6, e22812. First citation in articleGoogle Scholar

  • Riva, P., Lauro, L. J. R., DeWall, C. N. & Bushman, B. J. (2012). Buffer the pain away stimulating the right ventrolateral prefrontal cortex reduces pain following social exclusion. Psychological Science, 23, 1473–1475. First citation in articleCrossrefGoogle Scholar

  • Riva, P., Lauro, L. J. R., DeWall, C. N., Chester, D. S. & Bushman, B. J. (2014). Reducing aggressive responses to social exclusion using transcranial Direct Current Stimulation (tDCS). Social Cognitive and Affective Neuroscience, 10, 352–356. First citation in articleCrossrefGoogle Scholar

  • Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120, 2008–2039. First citation in articleCrossrefGoogle Scholar

  • Ruff, C. C., Ugazio, G. & Fehr, E. (2013). Changing social norm compliance with noninvasive brain stimulation. Science, 342, 482–484. First citation in articleCrossrefGoogle Scholar

  • Sanfey, A. G. (2007). Social decision-making: Insights from game theory and neuroscience. Science, 318, 598–602. First citation in articleCrossrefGoogle Scholar

  • Sanfey, A. G., Stallen, M. & Chang, L. J. (2014). Norms and expectations in social decision-making. Trends in Cognitive Sciences, 18, 172–174. First citation in articleCrossrefGoogle Scholar

  • Santiesteban, I., Banissy, M. J., Catmur, C. & Bird, G. (2012). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22, 2274–2277. First citation in articleCrossrefGoogle Scholar

  • Seyfarth, R. M. & Cheney, D. L. (2013). Affiliation, empathy, and the origins of theory of mind. Proceedings of the National Academy of Sciences, 110, 10349–10356. First citation in articleCrossrefGoogle Scholar

  • Spitzer, M., Fischbacher, U., Herrnberger, B., Grön, G. & Fehr, E. (2007). The neural signature of social norm compliance. Neuron, 56, 185–196. First citation in articleCrossrefGoogle Scholar

  • Stagg, C. J., Best, J. G., Stephenson, M. C., O’Shea, J., Wylezinska, M., Kincses, Z. T., … Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. The Journal of Neuroscience, 29, 5202–5206. First citation in articleCrossrefGoogle Scholar

  • Stagg, C. J. & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17, 37–53. First citation in articleCrossrefGoogle Scholar

  • Van Beest, I., Williams, K. D. & Van Dijk, E. (2011). Cyberbomb Effects of being ostracized from a death game. Group Processes & Intergroup Relations, 14, 581–596. First citation in articleCrossrefGoogle Scholar

  • Wagner, S., Rampersad, S. M., Aydin, Ü., Vorwerk, J., Oostendorp, T. F., Neuling, T., … Wolters, C. H. (2014). Investigation of tDCS volume conduction effects in a highly realistic head model. Journal of Neural Engineering, 11, 016002. First citation in articleGoogle Scholar

  • Williams, K. D. (2007). Ostracism. Annual Review of Psychology, 58, 425–452. First citation in articleCrossrefGoogle Scholar

  • Williams, K. D. & Jarvis, B. (2006). Cyberball: A program for use in research on interpersonal ostracism and acceptance. Behavior Research Methods, 38, 174–180. First citation in articleCrossrefGoogle Scholar

  • Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A. & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences, 107, 6753–6758. First citation in articleCrossrefGoogle Scholar

  • Zubek, J. P., Bayer, L. & Shephard, J. M. (1969). Relative effects of prolonged social isolation and confinement: Behavioral and EEG changes. Journal of Abnormal Psychology, 74, 625. First citation in articleCrossrefGoogle Scholar