Skip to main content
Original Article

Enhancing Spatial Ability Through Sport Practice

Evidence for an Effect of Motor Training on Mental Rotation Performance

Published Online:https://doi.org/10.1027/1614-0001/a000075

This experiment investigated the relationship between mental rotation and sport training. Undergraduate university students (n = 62) completed the Mental Rotation Test (Vandenberg & Kuse, 1978), before and after a 10-month training in two different sports, which either involved extensive mental rotation ability (wrestling group) or did not (running group). Both groups showed comparable results in the pretest, but the wrestling group outperformed the running group in the posttest. As expected from previous studies, males outperformed women in the pretest and the posttest. Besides, self-reported data gathered after both sessions indicated an increase in adaptive strategies following training in wrestling, but not subsequent to training in running. These findings demonstrate the significant effect of training in particular sports on mental rotation performance, thus showing consistency with the notion of cognitive plasticity induced from motor training involving manipulation of spatial representations. They are discussed within an embodied cognition framework.

References

  • Alexander, G. M. , Evardone, M. (2008). Blocks and bodies: Sex differences in a novel version of the Mental Rotations Test. Hormones and Behavior, 53, 177–184. First citation in articleCrossrefGoogle Scholar

  • Amorim, M. , Isableu, B. , Jarraya, M. (2006). Embodied spatial transformations: “Body analogy” for the mental rotation of objects. Journal of Experimental Psychology: General, 135, 327–347. First citation in articleCrossrefGoogle Scholar

  • Boot, W. R. , Kramer, A. F. , Simons, D. J. , Fabiani, M. , Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398. First citation in articleCrossrefGoogle Scholar

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytical studies. New York: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Cohen, M. , Kosslyn, S. M. , Breiter, H. , DiGirolamo, G. J. , Thompson, W. , Anderson, A. K. , ... Belliveau, J. W. (1996). Changes in cortical activity during mental rotation: A mapping study using functional magnetic resonance imaging. Brain, 119, 89–100. First citation in articleCrossrefGoogle Scholar

  • Coyle, T. R. , Bjorklund, D. F. (1997). Age differences in, and consequences of, multiple- and variable-strategy use on a multitrial sort-recall task. Developmental Psychology, 33, 372–380. First citation in articleCrossrefGoogle Scholar

  • De Lisi, R. , Wolford, J. (2002). Improving children’s mental rotation accuracy with computer game playing. The Journal of Genetic Psychology: Research and Theory on Human Development, 163, 272–282. First citation in articleCrossrefGoogle Scholar

  • Decety, J. (2002). Is there such a thing as functional equivalence between imagined, observed, and executed action? In A. N. Meltzoff W. Prinz, Eds., The imitative mind: Development, evolution, and brain bases (pp. 291–310). Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Elman, I. , Chi, W. H. , Gurvits, T. V. , Ryan, E. T. , Lasko, N. B. , Lukas, S. E. , Pitman, R. K. (2008). Impaired reproduction of three-dimensional objects by cocaine dependent subjects. Journal of Neuropsychiatry and Clinical Neurosciences, 20, 478–484. First citation in articleCrossrefGoogle Scholar

  • Feng, J. , Spence, I. , Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18, 850–855. First citation in articleCrossrefGoogle Scholar

  • Grezes, J. , Decety, J. (2001). Functional anatomy of execution, mental simulation, observation and verb generation of actions: A meta-analysis. Human Brain Mapping, 12, 1–19. First citation in articleCrossrefGoogle Scholar

  • Halpern, D. F. , Collaer, M. L. (2005). Sex differences in visuospatial abilities: More than meets the eye. In P. Shah A. Miyake, Eds., The Cambridge handbook of visuospatial thinking (pp. 170–212). New York: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Hegarty, M. , Waller, D. A. (2005). Individual differences in spatial abilities. In P. Shah A. Miyake, Eds., The Cambridge handbook of visuospatial thinking (pp. 121–169). New York: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Jansen, P. , Titze, C. , Heil, M. (2009). The influence of juggling on mental rotation performance. International Journal of Sport Psychology, 40, 351–359. First citation in articleGoogle Scholar

  • Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33, 1419–1433. First citation in articleCrossrefGoogle Scholar

  • Jeannerod, M. (1999). The 25th Bartlett Lecture. To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology, 52A, 1–29. First citation in articleCrossrefGoogle Scholar

  • Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35, 211–223. First citation in articleCrossrefGoogle Scholar

  • Kawamichi, H. , Kikuchi, Y. , Noriuchi, M. , Senoo, A. , Ueno, S. (2007). Distinct neural correlates underlying two- and three-dimensional mental rotations using three-dimensional objects. Brain Research, 1144, 117–126. First citation in articleCrossrefGoogle Scholar

  • Kosslyn, S. M. , DiGirolamo, G. J. , Thompson, W. L. , Alpert, N. M. (1998). Mental rotation of object versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 35, 151–161. First citation in articleCrossrefGoogle Scholar

  • Lee, A. C. , Harris, J. P. , Calvert, J. E. (1997). Impairments of mental rotation in Parkinson’s disease. Neuropsychologia, 36, 109–114. First citation in articleCrossrefGoogle Scholar

  • Linn, M. , Petersen, A. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498. First citation in articleCrossrefGoogle Scholar

  • Miyake, A. , Friedman, N. P. , Rettinger, D. A. , Shah, P. , Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130, 621–640. First citation in articleCrossrefGoogle Scholar

  • Moreau, D. , Clerc, J. , Mansy-Dannay, A. , Guerrien, A. (2010). Assessing movement imagery ability: Self-report questionnaires vs. performance-based tests. Europe’s Journal of Psychology, 4, 93–109. First citation in articleGoogle Scholar

  • Moreau, D. , Mansy-Dannay, A. , Clerc, J. , Guerrien, A. (2010). Academic program and mental rotation performance: Evidence for a developmental effect on individual differences in early adulthood. Education Sciences and Psychology, 2(17), 21–28. First citation in articleGoogle Scholar

  • Parsons, L. M. (1987). Imagined spatial transformation of one’s body. Journal of Experimental Psychology: General, 116, 172–191. First citation in articleCrossrefGoogle Scholar

  • Peters, M. , Laeng, B. , Latham, K. , Jackson, M. , Zaiyouna, R. , Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: Different versions and factors that affect performance. Brain and Cognition, 28, 39–58. First citation in articleCrossrefGoogle Scholar

  • Peters, M. , Lehmann, W. , Takahira, S. , Takeuchi, Y. , Jordan, K. (2006). Mental rotation test performance in four cross-cultural samples (N = 3367): Overall sex differences and the role of academic program in performance. Cortex, 42, 1005–1014. First citation in articleCrossrefGoogle Scholar

  • Quaiser-Pohl, C. , Geiser, C. , Lehmann, W. (2006). The relationship between computer-game preference, gender, and mental-rotation ability. Personality and Individual Differences, 40, 609–619. First citation in articleCrossrefGoogle Scholar

  • Richter, W , Somorjai, R. , Summers, R. , Jarmasz, M. , Menon, R. S. , Gati, J. S. , ... Kim, S. G. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12, 310–320. First citation in articleCrossrefGoogle Scholar

  • Schwenck, C. , Bjorklund, D. F. , Schneider, W. (2007). Factors influencing the incidence of Utilization Deficiencies and other patterns of recall/strategy-use relations in a strategic memory task. Child Development, 78, 1771–1787. First citation in articleCrossrefGoogle Scholar

  • Shepard, R. N. , Metzler, J. (1971). Mental rotation of three dimensional objects. Science, 171, 701–703. First citation in articleCrossrefGoogle Scholar

  • Vandenberg, S. G. , Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604. First citation in articleCrossrefGoogle Scholar

  • Vasta, R. , Knott, J. A. , Gaze, C. E. (1996). Can spatial training erase the gender differences on the water-level task? Psychology of Women Quarterly, 20, 549–568. First citation in articleCrossrefGoogle Scholar

  • Voyer, D. , Voyer, S. , Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270. First citation in articleCrossrefGoogle Scholar

  • Wexler, M. , Kosslyn, S. , Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68, 77–94. First citation in articleCrossrefGoogle Scholar

  • Williams, J. D. , Rippon, G. , Stone, B. M. , Annett, J. (1995). Psychophysiological correlates of dynamic imagery. British Journal of Psychology, 86, 283–300. First citation in articleCrossrefGoogle Scholar

  • Wraga, M. , Thompson, W. L. , Alpert, N. M. , Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain and Cognition, 52, 135–143. First citation in articleCrossrefGoogle Scholar

  • Zacks, J. M. , Ollinger, J. M. , Sheridan, M. A. , Tversky, B. (2002). A parametric study of mental spatial transformations of bodies. NeuroImage, 16, 857–872. First citation in articleCrossrefGoogle Scholar