Skip to main content
Research Article

Distractor Locations Influence Multiple Object Tracking Beyond Interobject Spacing

Evidence From Equidistant Distractor Displacements

Published Online:https://doi.org/10.1027/1618-3169/a000283

Human observers are able to keep track of several independently moving objects among other objects. Within theories of multiple object tracking (MOT), distractors are assumed to influence tracking performance only by their distance toward the next target. In order to test this assumption, we designed a variant of the MOT paradigm that involved spatially arranged target-distractor pairs and sudden displacements of distractors during a brief flash. Critically, these displacements maintained target-distractor spacing. Our results show that displacing distractors hurts tracking performance (Experiment 1). Importantly, target-distractor confusions occur within target-distractor pairs with displaced distractors (Experiment 2). This displacement effect increases with an increasing displacement angle (Experiment 3) but is equal at different distances between target and distractor (Experiment 4). This finding illustrates that distractors influence tracking performance beyond pure interobject spacing. We discuss how inhibitory processes as well as relations between targets and distractors might interfere with target tracking.

References

  • Alvarez, G. A., & Franconeri, S. L. (2007). How many objects can you track? Evidence for a resource-limited attentive tracking mechanism. Journal of Vision, 9, 1–10. doi: 10.1167/7.13.14 First citation in articleGoogle Scholar

  • Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19, 392–398. doi: 10.1111/j.1467-9280.2008.02098.x First citation in articleCrossref MedlineGoogle Scholar

  • Baayen, R. H. (2008). Analyzing linguistic data. A practical introduction to statistics using R. Cambridge, UK: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Bae, G. Y., & Flombaum, J. I. (2012). Close encounters of the distracting kind: Identifying the cause of visual tracking errors. Attention, Perception, & Psychophysics, 74, 703–715. doi: 10.3758/s13141-011-0260-1 First citation in articleCrossrefGoogle Scholar

  • Bettencourt, K. C., & Somers, D. C. (2009). Effects of target enhancement and distractor suppression on multiple object tracking capacity. Journal of Vision, 9, 1–11. doi: 10.1167/9.7.9 First citation in articleCrossrefGoogle Scholar

  • Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9, 349–354. doi: 10.1016/j.tics.2005.05.009 First citation in articleCrossref MedlineGoogle Scholar

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi: 10.1006/cogp.1998.0681 First citation in articleCrossref MedlineGoogle Scholar

  • Doran, M. M., & Hoffman, J. E. (2010a). The role of visual attention in multiple object tracking: Evidence from ERPs. Attention, Perception, & Psychophysics, 72, 33–52. doi: 10.3758/APP.72.1.33 First citation in articleCrossrefGoogle Scholar

  • Doran, M. M., & Hoffman, J. E. (2010b). Target enhancement and distractor suppression in multiple object tracking. In J. BrooksA. BelopolskyM. MatsukuraM. PalomaresEds., Object Perception, Attention, and Memory (OPAM) 2009 Conference Report 17th Annual Meeting, Boston, MA, USA (pp. 126–129). Abingdon, UK: Taylor & Francis. First citation in articleGoogle Scholar

  • Drew, T., Horowitz, T. S., Wolfe, J. M., & Vogel, E. K. (2012). Neural measures of dynamic changes in attentive tracking load. Journal of Cognitive Neuroscience, 24, 450–460. doi: 10.1162/jocn_a_00107 First citation in articleCrossrefGoogle Scholar

  • Drew, T., & Vogel, E. K. (2008). Neural measures of individual differences in selecting and tracking multiple objects. The Journal of Neuroscience, 28, 4183–4191. doi: 10.1523/jneurosci.0556-08.2008 First citation in articleCrossref MedlineGoogle Scholar

  • Fehd, H. M., & Seiffert, A. E. (2008). Eye movements during multiple object tracking: Where do participants look?. Cognition, 108, 201–209. doi: 10.1016/j.cognition.2007.11.008 First citation in articleCrossref MedlineGoogle Scholar

  • Feria, C. S. (2013). The effects of distractors in multiple object tracking are modulated by the similarity of distractor and target features. Perception, 41, 287–304. doi: 10.1068/p7053 First citation in articleCrossrefGoogle Scholar

  • Franconeri, S. L., Jonathan, S. V., & Scimeca, J. M. (2010). Tracking multiple objects is limited only by object spacing, not speed, time, or capacity. Psychological Science, 21, 920–925. doi: 10.1177/0956797610373935 First citation in articleCrossref MedlineGoogle Scholar

  • Holcombe, A. O., & Chen, W.-Y. (2012). Exhausting attentional tracking resources with a single fast-moving object. Cognition, 123, 218–228. doi: 101.1016/j.cognition.2011.10.003 First citation in articleCrossref MedlineGoogle Scholar

  • Hopf, J.-M., Boehler, C. N., Luck, S. J., Tsotsos, J. K., Heinze, H.-J., & Schoenfeld, M. A. (2006). Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences, 103, 1053–1058. doi: 10.1073/pnas.0507746103 First citation in articleCrossref MedlineGoogle Scholar

  • Howard, C. J., & Holcombe, A. O. (2008). Tracking the changing features of multiple objects: Progressively poorer perceptual precision and progressively greater perceptual lag. Vision Research, 48, 1164–1180. doi: 10.1016/j.visres.2008.01.023 First citation in articleCrossref MedlineGoogle Scholar

  • Howard, C. J., Masom, D., & Holcombe, A. O. (2011). Position representations lag behind targets in multiple object tracking. Vision Research, 51, 1907–1919. doi: 10.1016/j.visres.2011.07.001 First citation in articleCrossref MedlineGoogle Scholar

  • Huff, M., Meyerhoff, H. S., Papenmeier, F., & Jahn, G. (2010). Spatial updating of dynamic scenes: Tracking multiple invisible objects across viewpoint changes. Attention, Perception, and Psychophysics, 72, 628–636. doi: 10.3758/APP.72.3.628 First citation in articleCrossrefGoogle Scholar

  • Huff, M., Papenmeier, F., Jahn, G., & Hesse, F. W. (2010). Eye-movements across viewpoint changes in multiple object tracking. Visual Cognition, 18, 1368–1391. doi: 10.1080/13506280802061838 First citation in articleCrossrefGoogle Scholar

  • Hulleman, J. (2005). The mathematics of multiple object tracking: From proportions correct to number of objects tracked. Vision Research, 45, 2298–2309. doi: 10.1016/j.visres.2005.02.016 First citation in articleCrossref MedlineGoogle Scholar

  • Iordanescu, L., Grabowecky, M., & Suzuki, S. (2009). Demand-based dynamic distribution of attention and monitoring of velocities during multiple-object tracking. Journal of Vision, 9, 1–12. doi: 10.1167/9.4.1 First citation in articleCrossref MedlineGoogle Scholar

  • Jahn, G., Papenmeier, F., Meyerhoff, H. S., & Huff, M. (2012). Spatial reference in multiple object tracking. Experimental Psychology, 59, 163–173. doi: 10.1027/1618-3169/a000139 First citation in articleLinkGoogle Scholar

  • Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organisation of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 683–702. doi: 10.1037/0278-7393.26.3.683 First citation in articleCrossref MedlineGoogle Scholar

  • Keane, B. P., & Pylyshyn, Z. W. (2006). Is motion extrapolation employed in multiple object tracking? Tracking as a low-level, non-predictive function. Cognitive Psychology, 52, 346–368. doi: 10.1016/j.cogpsych.2005.12.001 First citation in articleCrossref MedlineGoogle Scholar

  • Liu, G., Austen, E. L., Booth, K. S., Fisher, B. D., Argue, R., Rempel, M. I., & Enns, J. T. (2005). Multiple-object tracking is based on scene, not retinal, coordinates. Journal of Experimental Psychology: Human Perception and Performance, 31, 235–247. doi: 10.1037/0096-1523.31.2.235 First citation in articleCrossref MedlineGoogle Scholar

  • Meyerhoff, H. S., Huff, M., Papenmeier, F., Jahn, G., & Schwan, S. (2011). Continuous visual cues trigger automatic spatial target updating in dynamic scenes. Cognition, 121, 73–82. doi: 10.1016/j.cognition.2011.06.001 First citation in articleCrossref MedlineGoogle Scholar

  • Meyerhoff, H. S., Papenmeier, F., Jahn, G., & Huff, M. (2013). A single unexpected change in target-but not distractor motion impairs multiple object tracking. i-Perception, 4, 81–83. doi: 10.1068/i0567sas First citation in articleCrossrefGoogle Scholar

  • Müller, M. M., Malinowski, P., Gruber, T., & Hillyard, S. A. (2003). Sustained division of the attentional spotlight. Nature, 424, 309–312. doi: 10.1038/nature01812 First citation in articleCrossref MedlineGoogle Scholar

  • Müller, N. G., Mollenhauer, M., Rösler, A., & Kleinschmidt, A. (2005). The attentional field has a Mexican hat distribution. Vision Research, 45, 1129–1137. doi: 10.1016/j.visres.2004.11.003 First citation in articleCrossref MedlineGoogle Scholar

  • Ogawa, H., Watanabe, K., & Yagi, A. (2009). Contextual cueing in multiple object tracking. Visual Cognition, 17, 1244–1258. doi: 10.1080/13506280802457176 First citation in articleCrossrefGoogle Scholar

  • Papenmeier, F., Huff, M., & Schwan, S. (2011). Representation of dynamic spatial configurations in visual short-term memory. Attention, Perception, & Psychophysics, 74, 397–415. doi: 10.3758/s13414-011-0242-3 First citation in articleCrossrefGoogle Scholar

  • Papenmeier, F., Meyerhoff, H. S., Jahn, G., & Huff, M. (2014). Tracking by location and features: Object correspondence across spatiotemporal discontinuities during multiple object tracking. Journal of Experimental Psychology: Human Perception and Performance, 40, 159–171. doi: 10.1037/a0033117 First citation in articleCrossref MedlineGoogle Scholar

  • Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D., R Development Core Team. (2011). Nlme: linear and nonlinear mixed effects models. R package version, 3, 1–102. First citation in articleGoogle Scholar

  • Pylyshyn, Z. W. (2004). Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Visual Cognition, 11, 801–822. doi: 10.1080/13506280344000518 First citation in articleCrossrefGoogle Scholar

  • Pylyshyn, Z. W. (2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving targets. Visual Cognition, 14, 175–198. doi: 10.1080/13506280544000200 First citation in articleCrossrefGoogle Scholar

  • Pylyshyn, Z. W. (2007). Things and places: How the mind connects with the perceptual world. Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E. (2008). Selective nontarget inhibition in multiple object tracking (MOT). Visual Cognition, 16, 1011–1021. doi: 10.1080/13506280802247486 First citation in articleCrossrefGoogle Scholar

  • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179–197. doi: 10.1163/156856888X00122 First citation in articleCrossref MedlineGoogle Scholar

  • Shim, W. M., Alvarez, G. A., & Jiang, Y. V. (2008). Spatial separation between targets constrains maintenance of attention on multiple objects. Psychonomic Bulletin & Review, 15, 390–397. doi: 10.3758/PBR.15.2.390 First citation in articleCrossref MedlineGoogle Scholar

  • Sears, C. R., & Pylyshyn, Z. W. (2000). Multiple object tracking and attentional processing. Canadian Journal of Experimental Psychology, 54, 1–14. doi: 10.1037/h0087326 First citation in articleCrossref MedlineGoogle Scholar

  • St. Clair, R., Huff, M., & Seiffert, A. E. (2010). Conflicting motion information impairs multiple object tracking. Journal of Vision, 10, 1–13. doi: 10.1167/10.4.18 First citation in articleCrossref MedlineGoogle Scholar

  • Tombu, M., & Seiffert, A. E. (2008). Attentional costs in multiple-object tracking. Cognition, 108, 1–25. doi: 10.1016/j.cognition.2007.12.014 First citation in articleCrossref MedlineGoogle Scholar

  • Tombu, M., & Seiffert, A. E. (2011). Tracking planets and moons: Mechanisms of object tracking revealed with a new paradigm. Attention, Perception, & Psychophysics, 73, 738–750. doi: 10.3758/s13414-010-0060-z First citation in articleCrossrefGoogle Scholar

  • Wolfe, J. M., Place, S. S., & Horowitz, T. S. (2007). Multiple object juggling: Changing what is tracked during extended multiple object tracking. Psychonomic Bulletin & Review, 14, 244–349. doi: 10.3758/BF03194075 First citation in articleCrossrefGoogle Scholar

  • Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24, 295–340. doi: 10.1016/0010-0285(92)90010-Y First citation in articleCrossref MedlineGoogle Scholar