Skip to main content
Original Article

Working Memory Functioning in Children With Poor Mathematical Skills

Relationships to IQ–Achievement Discrepancy and Additional Reading and Spelling Difficulties

Published Online:https://doi.org/10.1027/2151-2604/a000206

Previous research on working memory (WM) in children with poor mathematical skills has yielded heterogeneous results, possibly due to inconsistent consideration of the IQ–achievement discrepancy and additional reading and spelling difficulties. To examine the impact of both, the WM of 68 average-achieving and 68 low-achieving third-graders in mathematics was assessed. Preliminary analyses showed that poor mathematical skills were associated with poor WM. Afterwards, children with isolated mathematical difficulties were separated from those with additional reading and spelling difficulties. Half of each group fulfilled the IQ–achievement discrepancy, resulting in a 2 (additional reading and spelling difficulties: yes/no) by 2 (IQ–achievement discrepancy: yes/no) factorial design. Analyses revealed that not fulfilling the IQ–achievement discrepancy was associated with poor visual WM, whereas additional reading and spelling difficulties were associated with poor central executive functioning in children fulfilling the IQ–achievement discrepancy. Therefore, WM in children with poor mathematical skills differs according to the IQ–achievement discrepancy and additional reading and/or spelling difficulties.

References

  • Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106, 20–29. doi: 10.1016/j.jecp.2009.11.003 First citation in articleCrossrefGoogle Scholar

  • Andersson, U., & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96, 197–228. doi: 10.1016/j.jecp.2006.10.001 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D. (1986). Working memory. Oxford, UK: University Press. First citation in articleGoogle Scholar

  • Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology, 49, 5–28. doi: 10.1080/713755608 First citation in articleCrossrefGoogle Scholar

  • Birkel, P. (2007). Weingartener Grundwortschatz Rechtschreib-Test für 2. und 3. Klassen (WRT 2+) [Weingarten’s spelling test of basic vocabulary for second and third grade]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler [Statistics for researchers in human and social sciences]. Berlin, Germany: Springer. First citation in articleCrossrefGoogle Scholar

  • Brankaer, C., Ghesquière, P., & De Smedt, B. (2014). Numerical magnitude processing deficits in children with mathematical difficulties are independent of intelligence. Research in Developmental Disabilities, 35, 2603–2613. doi: 10.1016/j.ridd.2014.06.022 First citation in articleCrossrefGoogle Scholar

  • Bull, R., Johnston, R. S., & Roy, J. A. (1999). Exploring the roles of the visual-spatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 15, 421–442. doi: 10.1080/87565649909540759 First citation in articleCrossrefGoogle Scholar

  • Büttner, G., & Hasselhorn, M. (2011). Learning disabilities: Debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58, 75–87. doi: 10.1080/1034912X.2011.548476 First citation in articleCrossrefGoogle Scholar

  • Cattell, R., Weiß, R. H., & Osterland, J. (1997). Culture Fair Test – Grundintelligenztest Skala 1 (CFT 1) [Culture Fair Intelligence Test, Scale 1]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Chan, B. M., & Ho, C. S. (2010). The cognitive profile of Chinese children with mathematics difficulties. Journal of Experimental Child Psychology, 107, 260–279. doi: 10.1016/j.jecp.2010.04.016 First citation in articleCrossrefGoogle Scholar

  • Cohen, B. H. (2013). Explaining psychological statistics. New York, NY: Wiley. First citation in articleGoogle Scholar

  • D’Amico, A., & Guarnera, M. (2005). Exploring working memory in children with low arithmetical achievement. Learning and Individual Differences, 15, 189–202. doi: 10.1016/j.lindif.2005.01.002 First citation in articleCrossrefGoogle Scholar

  • De Weerdt, F., Desoete, A., & Roeyers, H. (2013). Working memory in children with reading disabilities and/or mathematical disabilities. Journal of Learning Disabilities, 46, 461–472. doi: 10.1177/0022219412455238 First citation in articleCrossrefGoogle Scholar

  • Dilling, H., Mombour, W., Schmidt, M. H., & Schulte-Markwort, E. (2011). Internationale Klassifikation psychischer Störungen: ICD-10 Kapitel V (F); Diagnostische Kriterien für Forschung und Praxis/Weltgesundheitsorganisation [WHO: Tenth Revision of the International Classification of Diseases, Chapter V (F): Mental and Behavioural Disorders. Diagnostic Criteria for Research]. Bern, Switzerland: Huber. First citation in articleGoogle Scholar

  • Dirks, E., Spyer, G., van Lieshout, E. C. D. M., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41, 460–473. doi: 10.1177/0022219408321128 First citation in articleCrossrefGoogle Scholar

  • Fischbach, A., Schuchardt, K., Brandenburg, J., Klesczewski, J., Balke-Melcher, C., Schmidt, C., … Hasselhorn, M. (2013). Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien [Prevalence of poor learners and children with learning disorders: Investigating the role of diagnostic criteria]. Lernen und Lernstörungen, 2, 65–76. doi: 10.1024/2235-0977/a000035 First citation in articleLinkGoogle Scholar

  • Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. doi: 10.1016/j.edurev.2013.05.003 First citation in articleCrossrefGoogle Scholar

  • Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of Experimental Child Psychology, 74, 213–239. doi: 10.1006/jecp.1999.2515 First citation in articleCrossrefGoogle Scholar

  • Hasselhorn, M., & Schuchardt, K. (2006). Lernstörungen: Eine kritische Skizze zur Epidemiologie [Learning disabilities: A critical sketch on epidemiology]. Kindheit und Entwicklung, 15, 208–215. doi: 10.1026/0942-5403.15.4.208 First citation in articleLinkGoogle Scholar

  • Hasselhorn, M., Schumann-Hengsteler, R., Gronauer, J., Grube, D., Mähler, C., Schmid, I., … Zoelch, C. (2012). Arbeitsgedächtnistestbatterie für Kinder von 5 bis 12 Jahren (AGTB 512.) [Working Memory Test Battery for Children Ages Five to Twelve]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Krajewski, K., Liehm, S., & Schneider, W. (2004). Deutscher Mathematiktest für zweite Klassen (DEMAT 2+) [German test for mathematical skills in second grade]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Kuhn, J.-T., Raddatz, J., Holling, H., & Dobel, C. (2013). Dyskalkulie vs. Rechenschwäche: Basisnumerische Verarbeitung in der Grundschule [Dyscalculia vs. severe math difficulties: Basic numerical capacities in elementary school]. Lernen und Lernstörungen, 2, 229–247. doi: 10.1024/2235-0977/a000044 First citation in articleLinkGoogle Scholar

  • Kyttälä, M. (2008). Visuospatial working memory in adolescents with poor performance in mathematics: Variation depending on reading skills. Educational Psychology, 28, 273–289. doi: 10.1080/01443410701532305 First citation in articleCrossrefGoogle Scholar

  • Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103, 309–324. doi: 10.1016/j.jecp.2009.03.006 First citation in articleCrossrefGoogle Scholar

  • Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51, 287–294. doi: 10.1111/j.1469-7610.2009.02164.x First citation in articleCrossrefGoogle Scholar

  • Lenhard, W., & Schneider, W. (2006). Ein Leseverständnistest für Erst- bis Sechstklässler (ELFE 1–6) [A reading comprehension test for first to sixth graders]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Logie, R. H. (1995). Visuo-spatial working memory. Hove, UK: Erlbaum. First citation in articleGoogle Scholar

  • Maehler, C., & Schuchardt, K. (2009). Working memory functioning in children with learning disabilities: Does intelligence make a difference? Journal of Intellectual Disability Research, 53, 3–10. doi: 10.1111/j.1365-2788.2008.01105.x First citation in articleCrossrefGoogle Scholar

  • Maehler, C., & Schuchardt, K. (2011). Working memory in children with learning disabilities: Rethinking the criterion of discrepancy. International Journal of Disability, Development and Education, 58, 5–17. doi: 10.1080/1034912X.2011.547335 First citation in articleCrossrefGoogle Scholar

  • McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetic learning difficulties. Journal of Experimental Child Psychology, 74, 240–260. First citation in articleCrossrefGoogle Scholar

  • Michalczyk, K., Malstädt, N., Worgt, M., Könen, T., & Hasselhorn, M. (2013). Age differences and measurement invariance of working memory in 5- to 12-year-old children. European Journal of Psychological Assessment, 29, 220–229. doi: 10.1027/1015-5759/a000149 First citation in articleLinkGoogle Scholar

  • Murphy, M. M., Mazzocco, M. M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40, 458–478. doi: 10.1177/00222194070400050901 First citation in articleCrossrefGoogle Scholar

  • Passolunghi, M. C. (2006). Working memory and arithmetic learning disability. In T. P. AllowayS. E. GathercoleEds., Working memory and neurodevelopmental disorders (pp. 113–138). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Passolunghi, M. C., & Mammarella, I. C. (2012). Selective spatial working memory impairment in a group of children with mathematics learning disabilities and poor problem-solving skills. Journal of Learning Disabilities, 45, 341–350. doi: 10.1177/0022219411400746 First citation in articleCrossrefGoogle Scholar

  • Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80, 44–57. doi: 10.1006/jecp.2000.2626 First citation in articleCrossrefGoogle Scholar

  • Peng, P., Congying, S., Beilei, L., & Sha, T. (2012). Phonological storage and executive function deficits in children with mathematics difficulties. Journal of Experimental Child Psychology, 112, 452–466. doi: 10.1016/j.jecp.2012.04.004 First citation in articleCrossrefGoogle Scholar

  • Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. doi: 10.1016/j.lindif.2009.10.005 First citation in articleCrossrefGoogle Scholar

  • Rotzer, S., Loenneker, T., Kucian, K., Martin, E., Klaver, P., & von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47, 2859–2865. doi: 10.1016/j.neuropsychologia.2009.06.009 First citation in articleCrossrefGoogle Scholar

  • Schuchardt, K., Maehler, C., & Hasselhorn, M. (2008). Working memory deficits in children with specific learning disorders. Journal of Learning Disabilities, 41, 514–523. doi: 10.1177/0022219408317856 First citation in articleCrossrefGoogle Scholar

  • Schuchardt, K., & Mähler, C. (2010). Unterscheiden sich Subgruppen rechengestörter Kinder in ihrer Arbeitsgedächtniskapazität, im basalen arithmetischen Faktenwissen und in den numerischen Basiskompetenzen? [Do dyscalculia subgroups differ in their working memory, basic arithmetical knowledge and numerical competencies?]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42, 217–225. doi: 10.1026/0049-8637/a000022 First citation in articleLinkGoogle Scholar

  • Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the literature. Review of Educational Research, 76, 249–274. doi: 10.3102/00346543076002249 First citation in articleCrossrefGoogle Scholar

  • van der Sluis, S., van der Leij, A., & de Jong, P. F. (2005). Working memory in Dutch children with reading- and arithmetic-related LD. Journal of Learning Disabilities, 38, 207–221. doi: 10.1177/00222194050380030301 First citation in articleCrossrefGoogle Scholar

  • World Health Organization (WHO) . (1993). The ICD-10 classification of mental and behavioural disorders: Diagnostic criteria for research (10th ed.). Geneva, Switzerland: Author. First citation in articleGoogle Scholar