Skip to main content

Phosphoinositide-Dependent Protein Kinase 1 (PDK1)

Impact on Schizophrenia Risk and Endophenotype Profile

Published Online:https://doi.org/10.1027/2151-2604/a000217

Abstract. Phosphatidylinositol-3-kinase (PI3K) signaling influences susceptibility to virus infections, anoxia, obstetric complications, and cancer; which are changed in patients with schizophrenia and their first degree relatives. Therefore PI3K signaling might have impact on the pathophysiology of schizophrenia. PI3K signaling crucially involves phosphoinositide-dependent protein kinase (PDK1). Increased anxiety behavior is observed in PDK1 hypomorphic mice. Here we show enhanced prevalence of schizophrenia in carriers of the PDK1 CC genotype in human beings. Moreover, decreased parietal P300 amplitude, which is a well-studied schizophrenic endophenotype, was observed in PDK1 CC carriers. Glutamate and glutamine concentrations are increased in the frontal lobe of PDK1 dysmorphic mice and human CC individuals. Our results demonstrate that the PDK1 CC genotype is associated with increased risk to develop schizophrenia, a typical endophenotype profile observed in the disease and modified neurotransmitter concentrations in brain regions associated with the disease.

References

  • Ackermann, T. F., Hörtnagl, H., Wolfer, D. P., Colacicco, G., Lang, F., Sohr, R., … Lang, U. E. (2008). Phosphatidylinositide dependent kinase deficiency increases anxiety and decreases GABA and serotonin abundance in the amygdala. Cellular Physiology and Biochemistry, 22, 735–744. First citation in articleCrossrefGoogle Scholar

  • Ackermann, T. F., Kempe, D. S., Lang, F. & Lang, U. E. (2010). Hyperactivity and enhanced curiosity of mice expressing PKB/SGK-resistant glycogen synthase kinase-3 (GSK-3). Cellular Physiology and Biochemistry, 25, 775–786. First citation in articleCrossrefGoogle Scholar

  • Altar, C. A., Hunt, R. A., Jurata, L. W., Webster, M. J., Derby, E., Gallagher, P., … Leang, P. (2008). Insulin, IGF-1, and muscarinic agonists modulate schizophrenia-associated genes in human neuroblastoma cells. Biological Psychiatry, 64, 1077–1087. First citation in articleCrossrefGoogle Scholar

  • Arguello, P. A. & Gogos, J. A. (2008). A signaling pathway AKTing up in schizophrenia. The Journal of Clinical Investigation, 118, 2018–2021. First citation in articleGoogle Scholar

  • Ashburner, J. & Friston, K. (1997). Multimodal image coregistration and partitioning – a unified framework. NeuroImage, 6, 209–217. First citation in articleCrossrefGoogle Scholar

  • Aubry, J. M., Schwald, M., Ballmann, E. & Karege, F. (2009). Early effects of mood stabilizers on the Akt/GSK-3beta signaling pathway and on cell survival and proliferation. Psychopharmacology (Berl), 205, 419–429. First citation in articleCrossrefGoogle Scholar

  • Brunet, A., Datta, S. R. & Greenberg, M. E. (2001). Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current Opinion in Neurobiology, 11, 297–305. First citation in articleCrossrefGoogle Scholar

  • Budni, J., Lobato, K. R., Binfaré, R. W., Freitas, A. E., Costa, A. P., Saavedra, M. D., … Rodrigues, A. L. (2011). Involvement of PI3K, GSK-3β and PPARγ in the antidepressant-like effect of folic acid in the forced swimming test in mice. Journal of Psychopharmacology, 26, 714–723. doi: 10.1177/0269881111424456 First citation in articleCrossrefGoogle Scholar

  • Carnero, A. (2010). The PKB/AKT pathway in cancer. Current Pharmaceutical Design, 16, 34–44. First citation in articleCrossrefGoogle Scholar

  • Catts, V. S., Catts, S. V., O’Toole, B. I. & Frost, A. D. (2008). Cancer incidence in patients with schizophrenia and their first-degree relatives – a meta-analysis. Acta Psychiatrica Scandinavica, 117, 323–336. First citation in articleCrossrefGoogle Scholar

  • Danielsen, E. R. & Henriksen, O. (1994). Absolute quantitative proton NMR spectroscopy based on the amplitude of the local water suppression pulse. Quantification of brain water and metabolites. NMR in Biomedicine, 7, 311–318. First citation in articleCrossrefGoogle Scholar

  • Dickman, D. K. & Davis, G. W. (2009). The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science, 326, 1127–1130. First citation in articleCrossrefGoogle Scholar

  • Elster, C., Schubert, F., Link, A., Walzel, M., Seifert, F. & Rinneberg, H. (2005). Quantitative magnetic resonance spectroscopy: Semi-parametric modeling and determination of uncertainties. Magnetic Resonance in Medicine, 53, 1288–1296. First citation in articleCrossrefGoogle Scholar

  • Emamian, E. S., Hall, D., Birnbaum, M. J., Karayiorgou, M. & Gogos, J. A. (2004). Convergent evidence for impaired AKT1-GSK3B signaling in schizophrenia. Nature Genetics, 36, 131–137. First citation in articleCrossrefGoogle Scholar

  • Felice, L. J., Felice, J. D. & Kissinger, P. T. (1978). Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. Journal of Neurochemistry, 31, 1461–1465. First citation in articleCrossrefGoogle Scholar

  • Gallinat, J., Götz, T., Kalus, P., Bajbouj, M., Sander, T. & Winterer, G. (2007). Genetic variations of the NR3A subunit of the NMDA receptor modulate prefrontal cerebral activity in humans. Journal of Cognitive Neuroscience, 19, 59–68. First citation in articleCrossrefGoogle Scholar

  • Gallinat, J., Schubert, F., Brühl, R., Hellweg, R., Klär, A. A., Kehrer, C., … Lang, U. E. (2010). Met carriers of BDNF Val66Met genotype show increased N-acetylaspartate concentration in the anterior cingulate cortex. NeuroImage, 49, 767–771. First citation in articleCrossrefGoogle Scholar

  • Gould, T. D. & Manji, H. K. (2005). Glycogen synthase kinase-3: A putative molecular target for lithium mimetic drugs. Neuropsychopharmacology, 30, 1223–1237. First citation in articleGoogle Scholar

  • Ikeda, M., Iwata, N., Suzuki, T., Kitajima, T., Yamanouchi, Y., Kinoshita, Y. & Ozaki, N. (2004). Association of AKT1 with schizophrenia confirmed in a Japanese population. Biological Psychiatry, 56, 698–700. First citation in articleCrossrefGoogle Scholar

  • Ikeda, Y., Yahata, N., Ito, I., Nagano, M., Toyota, T., Yoshikawa, T., … Suzuki, H. (2008). Low serum levels of brain-derived neurotrophic factor and epidermal growth factor in patients with chronic schizophrenia. Schizophrenia Research, 101, 58–66. First citation in articleCrossrefGoogle Scholar

  • Jagannathan, K., Calhoun, V. D., Gelernter, J., Stevens, M. C., Liu, J., Bolognani, F., … Pearlson, G. D. (2010). Genetic associations of brain structural networks in schizophrenia: A preliminary study. Biological Psychiatry, 68, 657–666. First citation in articleCrossrefGoogle Scholar

  • Jeon, Y. W. & Polich, J. (2003). Meta-analysis of P300 and schizophrenia: Patients, paradigms, and practical implications. Psychophysiology, 40, 684–701. First citation in articleCrossrefGoogle Scholar

  • Kalkman, H. O. (2006). The role of phosphoinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacology & Therapeutics, 110, 117–134. First citation in articleCrossrefGoogle Scholar

  • Kim, J. I., Lee, H. R., Sim, S. E., Beak, J., Yu, N. K., Choi, J. H., … Kaang, B. K. (2011). PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nature Neuroscience, 14, 1447–1454. First citation in articleCrossrefGoogle Scholar

  • Klein, P. S. & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Science of the United States of America, 93, 8455–8459. First citation in articleCrossrefGoogle Scholar

  • Kreis, R., Ernst, T. & Ross, B. D. (1993). Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 30, 424–437. First citation in articleCrossrefGoogle Scholar

  • Kumar, V., Zhang, M., Swank, M. W., Kunz, J. & Wu, G. (2005). Regulation of dendritic morphogenesis by Ras-PI3K-AktmTOR and Ras-MAPK signalling pathways. The Journal of Neuroscience, 25, 11288–11299. First citation in articleCrossrefGoogle Scholar

  • Lang, F., Böhmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N. & Vallon, C. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological Reviews, 86, 1151–1178. First citation in articleCrossrefGoogle Scholar

  • Lang, U. E., Puls, I., Müller, D. J., Strutz-Seebohm, N. & Gallinat, J. (2007). Molecular mechanisms of schizophrenia. Cellular Physiology and Biochemistry, 20, 687–702. First citation in articleCrossrefGoogle Scholar

  • Lawlor, M. A., Mora, A., Ashby, P. R., Williams, M. R., Murray-Tait, V., Malone, L., … Alessi, D. R. (2002). Essential role of PDK1 in regulating cell size and development in mice. EMBO Journal, 21, 3728–3738. First citation in articleCrossrefGoogle Scholar

  • Lee, A. H., Lange, C., Ricken, R., Hellweg, R. & Lang, U. E. (2011). Reduced brain-derived neurotrophic factor serum concentrations in acute schizophrenic patients increase during antipsychotic treatment. Journal of Clinical Psychopharmacology, 31, 334–336. First citation in articleCrossrefGoogle Scholar

  • Lu, X. H. & Dwyer, D. S. (2005). Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. Journal of Molecular Neuroscience, 27, 43–64. First citation in articleCrossrefGoogle Scholar

  • Martin-Pena, A., Acebes, A., Rodriguez, J., Sorribes, A., de Polavieja, G. G., Fernandez-Funez, P. & Ferrus, A. (2006). Age-independent synaptogenesis by phosphoinositide 3 kinase. The Journal of Neuroscience, 26, 10199–10208. First citation in articleCrossrefGoogle Scholar

  • Miller, S. A., Dykes, D. D. & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16, 1215. First citation in articleCrossrefGoogle Scholar

  • Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. (2004). PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell and Developmental Biology, 15, 161–170. First citation in articleCrossrefGoogle Scholar

  • Nicodemus, K. K., Law, A. J., Radulescu, E., Luna, A., Kolachana, B., Vakkalanka, R., … Weinberger, D. R. (2010). Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Archives of General Psychiatry, 67, 991–1001. First citation in articleCrossrefGoogle Scholar

  • Peltier, J., O’Neill, A. & Schaffer, D. V. (2007). PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Developmental Neurobiology, 67, 1348–1361. First citation in articleCrossrefGoogle Scholar

  • Piepponen, T. P. & Skujins, A. (2001). Rapid and sensitive step gradient assays of glutamate, glycine, taurine and gammaaminobutyric acid by high-performance liquid chromatography-fluorescence detection with o-phthalaldehydemercaptoethanol derivatization with an emphasis on microdialysis samples. J. Chromatogr. B. Biomed. Sci. Appl., 757, 277–283. First citation in articleCrossrefGoogle Scholar

  • Sandu, C., Artunc, F., Palmada, M., Rexhepaj, R., Grahammer, F., Hussain, A., … Lang, F. (2006). Impaired intestinal NHE3 activity in the PDK1 hypomorphic mouse. American Journal of Physiology, Gastrointestinal and Liver Physiology, 291, G868–G876. First citation in articleGoogle Scholar

  • Schubert, J., Gallinat, F., Seifert, F. & Rinneberg, H. (2004). Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla. NeuroImage, 21, 1762–1771. First citation in articleCrossrefGoogle Scholar

  • Schwab, S. G., Hoefgen, B., Hanses, C., Hassenbach, M. B., Albus, M., Lerer, B., … Wildenauer, D. B. (2005). Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biological Psychiatry, 58, 446–450. First citation in articleCrossrefGoogle Scholar

  • Shaw, M., Cohen, P. & Alessi, D. R. (1997). Further evidence that the inhibition of glycogen synthase kinase-3beta by IGF-1 is mediated by PDK1/PKB-induced phosphorylation of Ser-9 and not by dephosphorylation of Tyr-216. F.E.B.S. Letters, 416, 307–311. First citation in articleCrossrefGoogle Scholar

  • Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., … Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59, 22–33. First citation in articleGoogle Scholar

  • Silvestri, S., Seeman, M. V., Negrete, J. C., Houle, S., Shammi, C. M., Remington, G. J., … Seeman, P. (2000). Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: A clinical PET study. Psychopharmacology (Berl), 152, 174–180. First citation in articleCrossrefGoogle Scholar

  • Sperk, G. (1982). Simultaneous determination of serotonin, 5-hydroxindoleacetic acid, 3, 4-dihydroxyphenylacetic acid and homovanillic acid by high performance liquid chromatography with electrochemical detection. Journal of Neurochemistry, 38, 840–843. First citation in articleCrossrefGoogle Scholar

  • Sperk, G., Berger, M., Hörtnagl, H. & Hornykiewicz, O. (1981). Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat. European Journal of Pharmacology, 74, 279–286. First citation in articleCrossrefGoogle Scholar

  • Spitzer, R. L., Williams, J. B., Gibbon, M. & First, M. B. (1992). The Structured Clinical Interview for DSM-III-R (SCID) I: History, rationale, and description. Archives of General Psychiatry, 49, 624–629. First citation in articleCrossrefGoogle Scholar

  • van Elst, L. T., Valerius, G., Büchert, M., Thiel, T., Rüsch, N., Bubl, E., … Olbrich, H. M. (2005). Increased prefrontal and hippocampal glutamate concentration in schizophrenia: Evidence from a magnetic resonance spectroscopy study. Biological Psychiatry, 58, 724–730. First citation in articleCrossrefGoogle Scholar

  • Vanhaesebroeck, B. & Alessi, D. R. (2000). The PI3KPDK1 connection: More than just a road to PKB. Biochemical Journal, 346, 561–576. First citation in articleGoogle Scholar

  • Venkatasubramanian, G., Chittiprol, S., Neelakantachar, N., Shetty, T. & Gangadhar, B. N. (2010). Effect of antipsychotic treatment on Insulin-like Growth Factor-1 and cortisol in schizophrenia: A longitudinal study. Schizophrenia Research, 119, 131–137. First citation in articleCrossrefGoogle Scholar

  • Waters, F. (2009). Electrophysiological brain activity and antisaccade performance in schizophrenia patients with first-rank (passivity) symptoms. Psychiatry Research, 170, 140–149. First citation in articleCrossrefGoogle Scholar

  • Wirth, C., Schubert, F., Lautenschlager, M., Bruhl, R., Klar, A., Majic, T., … Gallinat, J. (2011). DTNBP1 (Dysbindin) Gene Variants: In vivo evidence for effects on hippocampal glutamate status. Current Pharmaceutical Biotechnology. First citation in articleGoogle Scholar

  • Wüstenberg, T., Begemann, M., Bartels, C., Gefeller, O., Stawicki, S., Hinze-Selch, D., … Ehrenreich, H. (2011). Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Molecular Psychiatry, 16, 26–36. First citation in articleCrossrefGoogle Scholar

  • Wyatt, A., Hussain, A., Amann, K., Klingel, K., Kandolf, R., Artunc, F., … Lang, F. (2006). DOCA-induced phosphorylation of glycogen synthase kinase 3beta. Cellular Physiology Biochemistry, 17, 137–144. First citation in articleCrossrefGoogle Scholar