Skip to main content
Review Article

Plasticity and Cortical Reorganization Associated With Pain

Published Online:https://doi.org/10.1027/2151-2604/a000241

Abstract. This review focuses on plasticity and reorganization associated with pain. It is well established that noxious stimulation activates a large network of neural structures in the human brain, which is often denominated as the neuromatrix of pain. Repeated stimulation is able to induce plasticity in nearly all structures of this neuromatrix. While the plasticity to short-term stimulation is usually transient, long-term stimulation might induce persistent changes within the neuromatrix network and reorganize its functions and structures. Interestingly, a large longitudinal study on patients with subacute back pain found predictors for the persistence of pain versus remission in mesolimbic structures not usually included in the neuromatrix of pain. From these results, new concepts of nociception, pain, and transition from acute to chronic pain emerged. Overall, this review outlines a number of plastic changes in response to pain. However, the role of plasticity for chronic pain has still to be established.

References

  • Apkarian, A. V., Baliki, M. N. & Geha, P. Y. (2009). Towards a theory of chronic pain. Progress in Neurobiology, 87, 81–97. First citation in articleCrossrefGoogle Scholar

  • Apkarian, A. V., Bushnell, M. C., Treede, R.-D. & Zubieta, J.-K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain, 9, 463–484. First citation in articleCrossrefGoogle Scholar

  • Apkarian, A. V., Sosa, Y., Sonty, S., Levy, R. M., Harden, R. N., Parrish, T. B. & Gitelman, D. R. (2004). Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. Journal of Neuroscience, 24, 10410–10415. First citation in articleCrossrefGoogle Scholar

  • Baliki, M. N. & Apkarian, A. V. (2015). Nociception, pain, negative moods, and behavior selection. Neuron, 87, 474–491. doi: 10.1016/j.neuron.2015.06.005 First citation in articleCrossrefGoogle Scholar

  • Baliki, M. N., Petre, B., Torbey, S., Herrmann, K. M., Huang, L., Schnitzer, T. J., … Apkarian, A. V. (2012). Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience, 15, 1117–1119. First citation in articleCrossrefGoogle Scholar

  • Bienenstock, E. L., Cooper, L. N. & Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience, 2, 32–48. First citation in articleCrossrefGoogle Scholar

  • Birbaumer, N., Lutzenberger, W., Montoya, P., Larbig, W., Unertl, K., Topfner, S., … Flor, H. (1997). Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. Journal of Neuroscience, 17, 5503–5508. First citation in articleCrossrefGoogle Scholar

  • Blankstein, U., Chen, J., Diamond, N. E. & Davis, K. D. (2010). Altered brain structure in irritable bowel syndrome: Potential contributions of pre-existing and disease-driven factors. Gastroenterology, 138, 1783–1789. doi: 10.1053/j.gastro.2009.12.043 First citation in articleCrossrefGoogle Scholar

  • Bliss, T. V. & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356. First citation in articleCrossrefGoogle Scholar

  • Blume, K. R., Dietrich, C., Huonker, R., Götz, T., Sens, E., Friedel, R., … Weiss, T. (2014). Cortical reorganization after macroreplantation at the upper extremity: A magnetoencephalographic study. Brain, 137, 757–769. doi: 10.1093/brain/awt366 First citation in articleCrossrefGoogle Scholar

  • Boström, K. J., de Lussanet, M. H. E., Weiss, T., Puta, C. & Wagner, H. (2014). A computational model unifies apparently contradictory findings concerning phantom pain. Scientific Reports, 4, 5298. doi: 10.1038/srep05298 First citation in articleCrossrefGoogle Scholar

  • Bushnell, M. C., Ceko, M. & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Reviews Neuroscience, 14, 502–511. First citation in articleCrossrefGoogle Scholar

  • Cauda, F., Palermo, S., Costa, T., Torta, R., Duca, S., Vercelli, U., … Torta, D. M. (2014). Gray matter alterations in chronic pain: A network-oriented meta-analytic approach. NeuroImage Clinical, 4, 676–686. doi: 10.1016/j.nicl.2014.04.007 First citation in articleCrossrefGoogle Scholar

  • Ceko, M., Shir, Y., Ouellet, J. A., Ware, M. A., Stone, L. S. & Seminowicz, D. A. (2015). Partial recovery of abnormal insula and dorsolateral prefrontal connectivity to cognitive networks in chronic low back pain after treatment. Human Brain Mapping, 36, 2075–2092. doi: 10.1002/hbm.22757 First citation in articleCrossrefGoogle Scholar

  • Chapman, C. R., Tuckett, R. P. & Song, C. W. (2008). Pain and stress in a systems perspective: Reciprocal neural, endocrine, and immune interactions. Journal of Pain, 9, 122–145. First citation in articleCrossrefGoogle Scholar

  • Dib-Hajj, S. D., Cummins, T. R., Black, J. A. & Waxman, S. G. (2010). Sodium channels in normal and pathological pain. Nature Reviews Neuroscience, 33, 325–347. First citation in articleGoogle Scholar

  • Dickenson, A. (2010). The neurobiology of chronic pain states. Anesthesia and Intensive Care Medicine, 12, 5–8. First citation in articleCrossrefGoogle Scholar

  • Dietrich, C., Walter-Walsh, K., Preißler, S., Hofmann, G. O., Witte, O. W., Miltner, W. H. R. & Weiss, T. (2012). Sensory feedback prosthesis reduces phantom limb pain: Proof of a principle. Neuroscience Letters, 507, 97–100. doi: 10.1016/j.neulet.2011.10.068 First citation in articleCrossrefGoogle Scholar

  • Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U. & May, A. (2004). Changes in grey matter induced by training: Newly honed juggling skills show up as a transient feature on a brain-imaging scan. Nature, 427, 311–312. First citation in articleCrossrefGoogle Scholar

  • Draganski, B., Moser, T., Lummel, N., Ganssbauer, S., Bogdahn, U., Haas, F. & May, A. (2006). Decrease of thalamic gray matter following limb amputation. NeuroImage, 31, 951–957. First citation in articleCrossrefGoogle Scholar

  • Elbert, T., Flor, H., Birbaumer, N., Knecht, S., Hampson, S., Larbig, W. & Taub, E. (1994). Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport, 5, 2593–2597. First citation in articleCrossrefGoogle Scholar

  • Farmer, M. A., Baliki, M. N. & Apkarian, A. V. (2012). A dynamic network perspective of chronic pain. Neuroscience Letters, 520, 197–203. doi: 10.1016/j.neulet.2012.05.001 First citation in articleCrossrefGoogle Scholar

  • Flor, H., Braun, C., Elbert, T. & Birbaumer, N. (1997). Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neuroscience Letters, 224, 5–8. First citation in articleCrossrefGoogle Scholar

  • Flor, H., Denke, C., Schaefer, M. & Grüsser, S. (2001). Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet, 357, 1763–1764. First citation in articleCrossrefGoogle Scholar

  • Flor, H., Diers, M. & Andoh, J. (2013). The neural basis of phantom limb pain. Trends in Cognitive Sciences, 17, 307–308. doi: 10.1016/j.tics.2013.04.007 First citation in articleCrossrefGoogle Scholar

  • Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., … Taub, E. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375, 482–484. First citation in articleCrossrefGoogle Scholar

  • Flor, H., Nikolajsen, L. & Jensen, T. S. (2006). Phantom limb pain: A case of maladaptive CNS plasticity? Nature Reviews Neuroscience, 7, 873–881. First citation in articleCrossrefGoogle Scholar

  • Gaser, C. & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23, 9240–9245. First citation in articleCrossrefGoogle Scholar

  • Geha, P. Y., Baliki, M. N., Harden, R. N., Bauer, W. R., Parrish, T. B. & Apkarian, A. V. (2008). The brain in chronic CRPS pain: Abnormal gray-white matter interactions in emotional and autonomic regions. Neuron, 60, 570–581. First citation in articleCrossrefGoogle Scholar

  • Granziera, C., Dasilva, A. F., Snyder, J., Tuch, D. S. & Hadjikhani, N. (2006). Anatomical alterations of the visual motion processing network in migraine with and without aura. PLoS Medicine, 3, e402, 1915–1921. doi: 10.1371/journal.pmed.0030402 First citation in articleCrossrefGoogle Scholar

  • Gwilym, S. E., Fillipini, N., Douaud, G., Carr, A. J. & Tracey, I. (2010). Thalamic atrophy associated with painful osteoarthritis of the hip is reversible after athroplasty: A longitudinal voxel-based-morphometric study. Arthritis and Rheumatology, 62, 2930–2940. doi: 10.1002/art.27585 First citation in articleCrossrefGoogle Scholar

  • Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62, 852–855. doi: 10.1016/j.neuroimage.2012.03.016 First citation in articleCrossrefGoogle Scholar

  • Henry, D. E., Chiodo, A. E. & Yang, W. (2011). Central nervous system reorganization in a variety of chronic pain states: A review. PM&R, 3, 1116–1125. doi: 10.1016/j.pmrj.2011.05.018 First citation in articleCrossrefGoogle Scholar

  • Iannetti, G. D. & Mouraux, A. (2010). From the neuromatrix of the pain matrix (and back). Experimental Brain Research, 205, 1–12. First citation in articleCrossrefGoogle Scholar

  • Jensen, T. S. & Finnerup, N. B. (2016). Plasticity of pain revisited in 2015. The Lancet Neurology, 15, 19–21. doi: 10.1016/S1474-4422(15)00343-9 First citation in articleCrossrefGoogle Scholar

  • Jutzeler, C. R., Freund, P., Huber, E., Curt, A. & Kramer, J. L. K. (2015). Neuropathic pain and functional reorganization in the primary sensorimotor cortex after spinal cord injury. The Journal of Pain, 16, 1256–1267. doi: 10.1016/j.jpain.2015.08.008 First citation in articleCrossrefGoogle Scholar

  • Kambi, N., Halder, P., Rajan, R., Arora, V., Chand, P., Arora, M. & Jain, N. (2014). Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity. Nature Communication, 5, 3602. doi: 10.1038/ncomms4602 First citation in articleCrossrefGoogle Scholar

  • Knecht, S., Henningsen, H., Elbert, T., Flor, H., Hohling, C., Pantev, C. & Taub, E. (1996). Reorganizational and perceptional changes after amputation. Brain, 119, 1213–1219. First citation in articleCrossrefGoogle Scholar

  • Krause, T., Asseyer, S., Taskin, B., Flöel, A., Witte, A. V., Mueller, K., … Jungehulsing, G. J. (2016). The cortical signature of central poststroke pain: Gray matter decreases in somatosensory, insular, and prefrontal cortices. Cerebral Cortex, 26, 80–88. doi: 10.1093/cercor/bhu177 First citation in articleCrossrefGoogle Scholar

  • Kuchinad, A., Schweinhardt, P., Seminowicz, D. A., Wood, P. B., Chizh, B. A. & Bushnell, M. C. (2007). Accelerated brain gray matter loss in fibromyalgia patients: Premature aging of the brain? Journal of Neuroscience, 27, 4004–4007. First citation in articleCrossrefGoogle Scholar

  • Liang, M., Mouraux, A., Hu, L. & Iannetti, G. D. (2013). Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nature Communications, 4, 1979. doi: 10.1038/ncomms2979 First citation in articleCrossrefGoogle Scholar

  • Liepert, J., Weiss, T., Meissner, W., Steinrücke, K. & Weiller, C. (2004). Exercise-induced changes of motor excitability with and without sensory block. Brain Research, 1003, 68–76. First citation in articleCrossrefGoogle Scholar

  • Lotze, M., Flor, H., Grodd, W., Larbig, W. & Birbaumer, N. (2001). Phantom movements and pain: An MRI study in upper limb amputees. Brain, 124, 2268–2277. First citation in articleCrossrefGoogle Scholar

  • Lotze, M., Laubis-Herrmann, U. & Topka, H. (2006). Combination of TMS and fMRI reveals a specific pattern of reorganization in M1 in patients after complete spinal cord injury. Restorative Neurology and Neuroscience, 24, 97–107. First citation in articleGoogle Scholar

  • Lutz, J., Jager, L., de Quervain, D., Krauseneck, T., Padberg, F., Wichnalek, M., … Schelling, G. (2008). White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study. Arthritis and Rheumatology, 58, 3960–3969. First citation in articleCrossrefGoogle Scholar

  • Maeda, Y., Kettner, N., Holden, J., Lee, J., Kim, J., Cina, S., … Napadow, V. (2014). Functional deficits in carpal tunnel syndrome reflect reorganization of primary somatosensory cortex. Brain, 137, 1741–1752. doi: 10.1093/brain/awu096 First citation in articleCrossrefGoogle Scholar

  • Maihöfner, C., Handwerker, H. O., Neundörfer, B. & Birklein, F. (2003). Patterns of cortical reorganization in complex regional pain syndrome. Neurology, 61, 1707–1715. First citation in articleCrossrefGoogle Scholar

  • Maihöfner, C., Handwerker, H. O., Neundörfer, B. & Birklein, F. (2004). Cortical reorganization during recovery from complex regional pain syndrome. Neurology, 63, 693–701. First citation in articleCrossrefGoogle Scholar

  • Makin, T. R., Filippini, N., Duff, E. P., Henderson Slater, D., Tracey, I. & Johansen-Berg, H. (2015). Network-level reorganisation of functional connectivity following arm amputation. NeuroImage, 114, 217–225. doi: 10.1016/j.neuroimage.2015.02.067 First citation in articleCrossrefGoogle Scholar

  • Makin, T. R., Scholz, J., Filippini, N., Henderson Slater, D., Tracey, I. & Johansen-Berg, H. (2013). Phantom pain is associated with preserved structure and function in the former hand area. Nature Communications, 4, 1570–1577. doi: 10.1038/ncomms2571 First citation in articleCrossrefGoogle Scholar

  • Makin, T. R., Scholz, J., Henderson Slater, D., Johansen-Berg, H. & Tracey, I. (2015). Reassessing cortical reorganization in the primary somatosensory cortex following arm amputation. Brain, 138, 2140–2146. First citation in articleCrossrefGoogle Scholar

  • Mansour, A. R., Baliki, M. N., Huang, L., Torbey, S., Herrmann, K. M., Schnitzer, T. J. & Apkarian, A. V. (2013). Brain white matter structural properties predict transition to chronic pain. Pain, 154, 2160–2168. First citation in articleCrossrefGoogle Scholar

  • May, A. (2008). Chronic pain may change the structure of the brain. Pain, 137, 7–15. First citation in articleCrossrefGoogle Scholar

  • May, A. (2011). Structural brain imaging: A window into chronic pain. The Neuroscientist, 17, 209–220. First citation in articleCrossrefGoogle Scholar

  • May, A., Ashburner, J., Buchel, C., McGonigle, D. J., Friston, K. J., Frackowiak, R. S. J. & Goadsby, P. J. (1999). Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nature Medicine, 5, 836–838. First citation in articleCrossrefGoogle Scholar

  • Melzack, R. & Wall, P. D. (1965). Pain mechanisms: A new theory. A gate control system modulates sensory input from the skin before it evokes pain perception and response. Science, 150, 971–979. First citation in articleCrossrefGoogle Scholar

  • Merzenich, M., Nelson, R. J., Stryker, M. P., Cynader, M. S., Schoppmann, A. & Zook, J. M. (1984). Somatosensory cortical map changes following digit amputation in adult monkeys. The Journal of Comparative Neurology, 224, 591–605. First citation in articleCrossrefGoogle Scholar

  • Miltner, W. H. R. & Weiss, T. (1998). Brain electrical correlates of pain processing. Zeitschrift für Rheumatologie, 57, 14–18. First citation in articleCrossrefGoogle Scholar

  • Moseley, G. L. (2004). Graded motor imagery is effective for long-standing complex regional pain syndrome: A randomised controlled trial. Pain, 108, 192–198. First citation in articleCrossrefGoogle Scholar

  • Moseley, G. L. (2006). Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology, 67, 2129–2134. doi: 10.1212/01.wnl.0000249112.56935.32 First citation in articleCrossrefGoogle Scholar

  • Moseley, G. L. & Flor, H. (2012). Targeting cortical representations in the treatment of chronic pain: A review. Neurorehabilitation and Neural Repair, 26, 646–652. doi: 10.1177/1545968311433209 First citation in articleCrossrefGoogle Scholar

  • Mouraux, A., Diukova, A., Lee, M. C., Wise, R. G. & Iannetti, G. D. (2011). A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage, 54, 2237–2249. First citation in articleCrossrefGoogle Scholar

  • Mutso, A. A., Petre, B., Huang, L., Baliki, M. N., Torbey, S., Herrmann, K. M., … Apkarian, A. V. (2014). Reorganization of hippocampal functional connectivity with transition to chronic back pain. Journal of Neurophysiology, 111, 1065–1076. doi: 10.1152/jn.00611.2013 First citation in articleCrossrefGoogle Scholar

  • Mutso, A. A., Radzicki, D., Baliki, M. N., Huang, L., Banisadr, G., Centeno, M. V., … Apkarian, A. V. (2012). Abnormalities in hippocampal functioning with persistent pain. The Journal of Neuroscience, 32, 5747–5756. doi: 10.1523/jneurosci.0587-12.2012 First citation in articleCrossrefGoogle Scholar

  • Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. (2006). Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10, 424–430. doi: 10.1016/j.tics.2006.07.005 First citation in articleCrossrefGoogle Scholar

  • Obermann, M., Nebel, K., Schumann, C., Holle, D., Gizewski, E. R., Maschke, M., … Katsarava, Z. (2009). Gray matter changes related to chronic posttraumatic headache. Neurology, 73, 978–983. doi: 10.1212/WNL.0b013e3181b8791a First citation in articleCrossrefGoogle Scholar

  • Obermann, M., Rodriguez-Raecke, R., Naegel, S., Holle, D., Mueller, D., Yoon, M.-S., … Katsarava, Z. (2013). Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. NeuroImage, 74, 352–358. doi: 10.1016/j.neuroimage.2013.02.029 First citation in articleCrossrefGoogle Scholar

  • Palermo, S., Benedetti, F., Costa, T. & Amanzio, M. (2015). Pain anticipation: An activation likelihood estimation meta-analysis of brain imaging studies. Human Brain Mapping, 36, 1648–1661. doi: 10.1002/hbm.22727 First citation in articleCrossrefGoogle Scholar

  • Peyron, R., Laurent, B. & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiologie Clinique – Clinical Neurophysiology, 30, 263–288. First citation in articleCrossrefGoogle Scholar

  • Preißler, S., Dietrich, C., Meissner, W., Huonker, R., Hofmann, G. O., Miltner, W. H. R. & Weiss, T. (2011). Brachial plexus block in phantom limb pain: A case report. Pain Medicine, 12, 1649–1654. doi: 10.1111/j.1526-4637.2011.01247.x First citation in articleCrossrefGoogle Scholar

  • Preißler, S., Feiler, J., Dietrich, C., Hofmann, G. O., Miltner, W. H. R. & Weiss, T. (2013). Gray matter changes following limb amputation with high and low intensities of phantom limb pain. Cerebral Cortex, 23, 1038–1048. doi: 10.1093/cercor/bhs063 First citation in articleCrossrefGoogle Scholar

  • Puta, C., Schulz, B., Schoeler, S., Magerl, W., Gabriel, B., Gabriel, H. H. W., … Weiss, T. (2012). Enhanced sensitivity to punctate painful stimuli in female patients with chronic low back pain. BMC Neurology, 12, 98. doi: 10.1186/1471-2377-12-98 First citation in articleCrossrefGoogle Scholar

  • Puta, C., Schulz, B., Schoeler, S., Magerl, W., Gabriel, B., Gabriel, H. H. W., … Weiss, T. (2013). Somatosensory abnormalities for painful and innocuous stimuli at the back and at a site distinct from the region of pain in chronic back pain patients. Plos One, 8, e58885. doi: 10.1371/journal.pone.0058885 First citation in articleCrossrefGoogle Scholar

  • Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. & Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277, 968–971. First citation in articleCrossrefGoogle Scholar

  • Rauschecker, J. P., May, E. S., Maudoux, A. & Ploner, M. (2015). Frontostriatal gating of tinnitus and chronic pain. Trends in Cognitive Sciences, 19, 567–578. doi: 10.1016/j.tics.2015.08.002 First citation in articleCrossrefGoogle Scholar

  • Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W. & May, A. (2009). Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. Journal of Neuroscience, 29, 13746–13750. doi: 10.1523/jneurosci.3687-09.2009 First citation in articleCrossrefGoogle Scholar

  • Schmidt-Wilcke, T., Leinisch, E., Ganbauer, S., Draganski, B., Bogdahn, U., Altmeppen, J. & May, A. (2006). Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain, 125, 89–97. First citation in articleCrossrefGoogle Scholar

  • Seminowicz, D. A., Labus, J. S., Bueller, J. A., Tillisch, K., Naliboff, B. D., Bushnell, M. C. & Mayer, E. A. (2010). Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology, 139, 48–57. doi: 10.1053/j.gastro.2010.03.049 First citation in articleCrossrefGoogle Scholar

  • Seminowicz, D. A., Wideman, T. H., Naso, L., Hatami-Khoroushahi, Z., Fallatah, S., Ware, M. A., … Stone, L. S. (2011). Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. Journal of Neuroscience, 31, 7540–7550. First citation in articleCrossrefGoogle Scholar

  • Sens, E., Teschner, U., Meissner, W., Preul, C., Huonker, R., Witte, O. W., … Weiss, T. (2012). Effects of temporary functional deafferentation on the brain, sensation, and behavior of stroke patients. The Journal of Neuroscience, 32, 11773–11779. doi: 10.1523/jneurosci.5912-11.2012 First citation in articleCrossrefGoogle Scholar

  • Smallwood, R. F., Laird, A. R., Ramage, A. E., Parkinson, A. L., Lewis, J., Clauw, D. J., … Robin, D. A. (2013). Structural brain anomalies and chronic pain: A quantitative meta-analysis of gray matter volume. Journal of Pain, 14, 663–675. doi: 10.1016/j.jpain.2013.03.001 First citation in articleCrossrefGoogle Scholar

  • Suzuki, R. & Dickenson, A. H. (2000). Neuropathic pain: Nerves bursting with excitement. Neuroreport, 11, R17–R21. First citation in articleGoogle Scholar

  • Tecchio, F., Padua, L., Aprile, I. & Rossini, P. M. (2002). Carpal tunnel syndrome modifies sensory hand cortical somatotopy: A MEG study. Human Brain Mapping, 17, 28–36. First citation in articleCrossrefGoogle Scholar

  • Teutsch, S., Herken, W., Bingel, U., Schoell, E. & May, A. (2008). Changes in brain gray matter due to repetitive painful stimulation. NeuroImage, 42, 845–849. First citation in articleCrossrefGoogle Scholar

  • Treede, R. D., Kenshalo, D. R., Gracely, R. H. & Jones, A. K. P. (1999). The cortical representation of pain. Pain, 79, 105–111. First citation in articleCrossrefGoogle Scholar

  • Vogt, B. A. & Sikes, R. W. (2000). The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Progress in Brain Research, 122, 223–235. First citation in articleCrossrefGoogle Scholar

  • Weiss, T., Dietrich, C., Preißler, S., Möbius, H., Gube, H., Torma, F., … Hofmann, G. O. (2013). Nutzung einer myoelektrischen Unterarmprothese mit Biofeedback. Reduktion von Phantomschmerz und Erhöhung der Funktionalität [Use of a myoelectric forerarm prosthetic with biofeedback. Reduction of phantom pain and increase in functionality]. Trauma und Berufskrankheit, 15, 207–215. First citation in articleCrossrefGoogle Scholar

  • Weiss, T., Miltner, W. H. R., Dillmann, J., Meissner, W., Huonker, R. & Nowak, H. (1998). Reorganization of the somatosensory cortex after amputation of the index finger. Neuroreport, 9, 213–216. First citation in articleCrossrefGoogle Scholar

  • Weiss, T., Miltner, W. H. R., Huonker, R., Friedel, R., Schmidt, I. & Taub, E. (2000). Rapid functional plasticity of the somatosensory cortex after finger amputation. Experimental Brain Research, 134, 199–203. First citation in articleCrossrefGoogle Scholar

  • Weiss, T., Miltner, W. H. R., Liepert, J., Meissner, W. & Taub, E. (2004). Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. European Journal of Neuroscience, 20, 3413–3423. First citation in articleCrossrefGoogle Scholar

  • Werhahn, K. J., Mortensen, J., Van Boven, R. W., Zeuner, K. E. & Cohen, L. G. (2002). Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation. Nature Neuroscience, 5, 936–938. First citation in articleCrossrefGoogle Scholar

  • Wood, J. N., Boorman, J. P., Okuse, K. & Baker, M. D. (2004). Voltage-gated sodium channels and pain pathways. Journal of Neurobiology, 61, 55–71. First citation in articleCrossrefGoogle Scholar

  • Woolf, C. J. & Salter, M. W. (2000). Neuronal plasticity: Increasing the gain in pain. Science, 288, 1765–1768. First citation in articleCrossrefGoogle Scholar

  • Wrigley, P. J., Press, S. R., Gustin, S. M., Macefield, V. G., Gandevia, S. C., Cousins, M. J., … Siddall, P. J. (2009). Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain, 141, 52–59. First citation in articleCrossrefGoogle Scholar