Skip to main content
Review Article

Plasticity and Reorganization in the Rehabilitation of Stroke

The Constraint-Induced Movement Therapy (CIMT) Example

Published Online:https://doi.org/10.1027/2151-2604/a000243

Abstract. This paper outlines some actual developments in the behavioral treatment and rehabilitation of stroke and other brain injuries in post-acute and chronic conditions of brain lesion. It points to a number of processes that demonstrate the enormous plasticity and reorganization capacity of the human brain following brain lesion. It also highlights a series of behavioral and neuroscientific studies that indicate that successful behavioral rehabilitation is paralleled by plastic changes of brain structures and by cortical reorganization and that the amount of such plastic changes is obviously significantly determining the overall outcome of rehabilitation.

References

  • Adkins, D. L., Hsu, J. E. & Jones, T. A. (2008). Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Experimental Neurology, 212, 14–28. First citation in articleCrossrefGoogle Scholar

  • Allred, R. P., Kim, S. Y. & Jones, T. A. (2014). Use it and/or lose it – experience effects on brain remodeling across time after stroke. Frontiers in Human Neuroscience, 8, 379. doi: 10.3389/fnhum.2014.00379 First citation in articleCrossrefGoogle Scholar

  • Altenmüller, E. & Ioannou, C. I. (2016). Maladaptive plasticity induces degradation of fine motor skills in musicians: Apollo’s curse. Zeitschrift für Psychologie, 224, 80–90. doi: 10.1027/2151-2604/a000242 First citation in articleLinkGoogle Scholar

  • Angelelli, P., Paolucci, S., Bivona, U., Piccardi, L., Ciurli, P., Cantagallo, A., … Pizzamiglio, L. (2004). Development of neuropsychiatric symptoms in poststroke patients: A cross-sectional study. Acta Psychiatrica Scandinavica, 110, 55–63. First citation in articleCrossrefGoogle Scholar

  • Arya, K. N., Pandian, S., Verma, R. & Garg, R. K. (2011). Movement therapy induced neural reorganization and motor recovery in stroke: A review. Journal of Bodywork and Movement Therapies, 15, 528–537. First citation in articleCrossrefGoogle Scholar

  • Bauder, H., Taub, E. & Miltner, W. H. R. (2001). Behandlung motorischer Störungen nach Schlaganfall: Die Taubsche Bewegungsinduktionstherapie [Treatment of motor disorders following stroke. The Constraint-Induced Movement Therapy]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Belda-Lois, J.-M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J. C., Pons, J. L., Farina, D., … Rea, M. (2011). Rehabilitation of gait after stroke: A review towards a top-down approach. Journal of Neuroengineering and Rehabilitation, 8, 66. doi: 10.1186/1743-0003-8-66 First citation in articleCrossrefGoogle Scholar

  • Bell, H. C., Pellis, S. M. & Kolb, B. (2010). Juvenile peer play experience and the development of the orbitofrontal and medial prefrontal cortices. Behavioural Brain Research, 207, 7–13. First citation in articleCrossrefGoogle Scholar

  • Bola, M., Prilloff, S., Matzke, S. & Henrich-Noack, P. (2013). Brain restoration as an emerging field in neurology and neuroscience. Restorative Neurology and Neuroscience, 31, 669–679. First citation in articleGoogle Scholar

  • Bowden, M. G., Woodbury, M. L. & Duncan, P. W. (2013). Promoting neuroplasticity and recovery after stroke: Future directions for rehabilitation clinical trials. Current Opinion in Neurology, 26, 37–42. First citation in articleCrossrefGoogle Scholar

  • Brady, B. K., McGahan, L. & Skidmore, B. (2005). Systematic review of economic evidence on stroke rehabilitation services. International Journal of Technology Assessment in Health Care, 21, 15–21. First citation in articleCrossrefGoogle Scholar

  • Braun, C., Haug, M., Wiech, K., Birbaumer, N., Elbert, T. & Roberts, L. E. (2002). Functional organization of primary somatosensory cortex depends on the focus of attention. NeuroImage, 17, 1451–1458. First citation in articleCrossrefGoogle Scholar

  • Brown, C. E., Li, P., Boyd, J. D., Delaney, K. R. & Murphy, T. H. (2007). Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. Journal of Neuroscience, 27, 4101–4109. First citation in articleCrossrefGoogle Scholar

  • Candia, V., Elbert, T., Altenmüller, E., Rau, H., Schafer, T. & Taub, E. (1999). Constraint-induced movement therapy for focal hand dystonia in musicians. Lancet, 353, 42. First citation in articleCrossrefGoogle Scholar

  • Candia, V., Rosset-Llobet, J., Elbert, T. & Pascual-Leone, A. (2005). Changing the brain through therapy for musicians’ hand dystonia. Annals of the New York Academy of Sciences, 1060, 335–342. doi: 10.1196/annals.1360.028 First citation in articleCrossrefGoogle Scholar

  • Comeau, W. L., McDonald, R. & Kolb, B. (2010). Learning-induced alterations in prefrontal cortical circuitry. Behavioural Brain Bresearch, 214, 91–101. First citation in articleCrossrefGoogle Scholar

  • Cooper, J. O., Heron, T. E. & Heward, W. L. (2013). Applied behavior analysis. New York, NY: Pearson. First citation in articleGoogle Scholar

  • Cumming, T. B., Marshall, R. S. & Lazar, R. M. (2013). Stroke, cognitive deficits, and rehabilitation: Still an incomplete picture. International Journal of Stroke, 8, 38–45. First citation in articleCrossrefGoogle Scholar

  • Dietrich, C., Walter-Walsh, K., Preißler, S., Hofmann, G. O., Witte, O. W., Miltner, W. H. & Weiss, T. (2012). Sensory feedback prosthesis reduces phantom limb pain: Proof of a principle. Neuroscience Letters, 507, 97–100. First citation in articleCrossrefGoogle Scholar

  • Dobkin, B. H. (2004). Strategies for stroke rehabilitation. Lancet Neurology, 3, 528–536. First citation in articleCrossrefGoogle Scholar

  • Dobkin, B. H. & Dorsch, A. (2013). New evidence for therapies in stroke rehabilitation. Current Atherosclerosis Reports, 15. doi: 10.1007/s11883-013-0331-y First citation in articleCrossrefGoogle Scholar

  • Elbert, T., Candia, V., Altenmuller, E., Rau, H., Sterr, A., Rockstroh, B., … Taub, E. (1998). Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport, 9, 3571–3575. First citation in articleCrossrefGoogle Scholar

  • Faralli, A., Bigoni, M., Mauro, A., Rossi, F. & Carulli, D. (2013). Noninvasive strategies to promote functional recovery after stroke. Neural Plasticity, 2013, 854597. doi: 10.1155/2013/854597 First citation in articleCrossrefGoogle Scholar

  • Feigin, V. L., Mensah, G. A., Norrving, B., Murray, C. J. L., & Roth, G. A., G. B. D. Stroke Panel Experts Grp. (2015). Atlas of the Global Burden of Stroke (1990–2013): The GBD 2013 Study. Neuroepidemiology, 45, 230–236. First citation in articleCrossrefGoogle Scholar

  • Fiorino, D. & Kolb, B. (2003). Sexual experience leads to long-lasting morphological changes in male rat prefrontal cortex, parietal cortex, and nucleus accumbens neurons. Society for Neuroscience Abstracts, 29, 402.3. First citation in articleGoogle Scholar

  • Flor, H., Diers, M. & Andoh, J. (2013). The neural basis of phantom limb pain. Trends in Cognitive Sciences, 17, 307–308. First citation in articleCrossrefGoogle Scholar

  • Flor, H., Elbert, T., Knecht, S., Wienbruch, C., Pantev, C., Birbaumer, N., … Taub, E. (1995). Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature, 375, 482–484. First citation in articleCrossrefGoogle Scholar

  • Frost, S. B., Barbay, S., Friel, K. M., Plautz, E. J. & Nudo, R. J. (2003). Reorganization of remote cortical regions after ischemic brain injury: A potential substrate for stroke recovery. Journal of Neurophysiology, 89, 3205–3214. First citation in articleCrossrefGoogle Scholar

  • Gauthier, L. V., Mark, V. W., Taub, E., McCullars, A., Barghi, A., Rickards, T., … Uswatte, G. (2014). Motor recovery from constraint induced movement therapy is not constrained by extent of tissue damage following stroke. Restorative Neurology and Neuroscience, 32, 755–765. First citation in articleGoogle Scholar

  • Gauthier, L. V., Taub, E., Mark, V. W., Barghi, A. & Uswatte, G. (2012). Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke. Stroke, 43, 453–457. First citation in articleCrossrefGoogle Scholar

  • Greenough, W. T. & Chang, F. F. (1989). Plasticity of synapse structure and pattern in the cerebral cortex. Cerebral Cortex, 7, 391–440. First citation in articleCrossrefGoogle Scholar

  • Horn, G. (2014). Pathways of the past: The imprint of memory. Nature Reviews Neuroscience, 5, 108–120. First citation in articleCrossrefGoogle Scholar

  • Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T. & Guicrobles, E. (1990). Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. Journal of Neurophysiology, 63, 82–104. First citation in articleCrossrefGoogle Scholar

  • Johansson, B. B. (2011). Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurologica Scandinavica, 123, 147–159. First citation in articleCrossrefGoogle Scholar

  • Kolb, B. & Muhammad, A. (2014). Harnessing the power of neuroplasticity for intervention. Frontiers in Human Neuroscience, 8, 377. doi: 10.3389/fnhum.2014.00377 First citation in articleCrossrefGoogle Scholar

  • Kolb, B., Muhammad, A. & Gibb, R. (2011). Searching for factors underlying cerebral plasticity in the normal and injured brain. Journal of Communication Disorders, 44, 503–514. First citation in articleCrossrefGoogle Scholar

  • Kolb, B. & Teskey, G. C. (2012). Age, experience, injury, and the changing brain. Developmental Psychobiology, 54, 311–325. First citation in articleCrossrefGoogle Scholar

  • Kolb, B., Teskey, G. C. & Gibb, R. (2010). Factors influencing cerebral plasticity in the normal and injured brain. Frontiers in Human Neuroscience, 4, 204. doi: 10.3389/fnhum.2010.00204 First citation in articleCrossrefGoogle Scholar

  • Kopp, B., Kunkel, A., Muhlnickel, W., Villringer, K., Taub, E. & Flor, H. (1999). Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport, 10, 807–810. First citation in articleCrossrefGoogle Scholar

  • Kramer, A. F., Bherer, L., Colcombe, S. J., Dong, W. & Greenough, W. T. (2004). Environmental influences on cognitive and brain plasticity during aging. Journal of Gerontology: Medical Sciences, 59, 940–957. First citation in articleCrossrefGoogle Scholar

  • Kurland, J., Pulvermueller, F., Silva, N., Burke, K. & Andrianopoulos, M. (2012). Constrained versus unconstrained intensive language therapy in two individuals with chronic, moderate-to-severe aphasia and apraxia of speech: Behavioral and fmri outcomes. American Journal of Speech-Language Pathology, 21, S65–S87. First citation in articleGoogle Scholar

  • Kwakkel, G., Veerbeek, J. M., van Wegen, E. E. H. & Wolf, S. L. (2015). Constraint-induced movement therapy after stroke. Lancet Neurology, 14, 224–234. First citation in articleCrossrefGoogle Scholar

  • Laufer, Y. & Elboim-Gabyzon, M. (2011). Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabilitation and Neural Repair, 25, 799–809. First citation in articleCrossrefGoogle Scholar

  • Liepert, J. (2010). Evidence-based therapies for upper extremity dysfunction. Current Opinion in Neurology, 23, 678–682. First citation in articleCrossrefGoogle Scholar

  • Liepert, J. (2012). Evidence-Based Methods in Motor Rehabilitation after Stroke. Fortschritte Der Neurologie Psychiatrie, 80, 388–393. First citation in articleCrossrefGoogle Scholar

  • Liepert, J. (2013). Neurorehabilitation after stroke: Review of current concepts and future developments. Klinische Neurophysiologie, 44, 223–234. First citation in articleCrossrefGoogle Scholar

  • Liepert, J. (2015). How evidence based is the positioning of patients with neurological illness? Deutsches Arzteblatt International, 112, 33–34. First citation in articleGoogle Scholar

  • Liepert, J., Bauder, H., Miltner, W. H., Taub, E. & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 1210–1216. First citation in articleCrossrefGoogle Scholar

  • Liepert, J., Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C., Taub, E. & Weiller, C. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters, 250, 5–8. First citation in articleCrossrefGoogle Scholar

  • Liew, S.-L., Santarnecchi, E., Buch, E. R. & Cohen, L. G. (2014). Non-invasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Frontiers in Human Neuroscience, 8, 378. doi: 10.3389/fnhum.2014.00378 First citation in articleCrossrefGoogle Scholar

  • Mark, V. W., Taub, E., Bashir, K., Uswatte, G., Delgado, A., Bowman, M. H., … Cutter, G. R. (2008). Constraint-induced movement therapy can improve hemiparetic progressive multiple sclerosis preliminary findings. Multiple Sclerosis, 14, 992–994. First citation in articleCrossrefGoogle Scholar

  • Mark, V. W., Taub, E., Uswatte, G., Bashir, K., Cutter, G. R., Bryson, C. C., … Bowman, M. H. (2013). Constraint-induced movement therapy for the lower extremities in multiple sclerosis: Case series with 4-year follow-up. Archives of Physical Medicine and Rehabilitation, 94, 753–760. First citation in articleCrossrefGoogle Scholar

  • McEwen, B. S. (2005). Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain. Metabolism Clinical and Experimental, 54, 20–23. First citation in articleCrossrefGoogle Scholar

  • Meck, W. H. & Williams, C. L. (2003). Metabolic imprinting of choline by its availability during gestation: Implications for memory and attentional processing across the lifespan. Neuroscience and Biobehavioral Reviews, 27, 385–399. First citation in articleCrossrefGoogle Scholar

  • Merzenich, M. M. (2013). Soft-wired: How the new science of brain plasticity can change your life. San Francisco, CA: Parnassus Publishing. First citation in articleGoogle Scholar

  • Merzenich, M. M., Van Vleet, T. M. & Nahum, M. (2014). Brain plasticity-based therapeutics. Frontiers in Human Neuroscience, 8, 385. doi: 10.3389/fnhum.2014.00385 First citation in articleCrossrefGoogle Scholar

  • Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C. & Taub, E. (1999). Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke – A replication. Stroke, 30, 586–592. First citation in articleCrossrefGoogle Scholar

  • Miltner, W. H. R., Bauder, H. & Taub, E. (2016). Change in movement-related cortical potentials following constraint-induced movement therapy (CIMT) after stroke. Zeitschrift für Psychologie, 224, 112–124. doi: 10.1027/2151-604/a000245 First citation in articleLinkGoogle Scholar

  • Monfils, M. H., Driscoll, I., Vavrek, R., Kolb, B. & Fouad, K. (2008). FGF-2-induced functional improvement from neonatal motor cortex injury via corticospinal projections. Experimental Brain Research, 185, 453–460. First citation in articleCrossrefGoogle Scholar

  • Monfils, M. H. & Teskey, G. C. (2004). Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse, 53, 114–121. First citation in articleCrossrefGoogle Scholar

  • Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., & Cushman, M., … Stroke Stat Subcomm. (2015). Heart disease and stroke statistics-2015 update a report from the American Heart Association. Circulation, 131, E29–E322. First citation in articleGoogle Scholar

  • Mychasiuk, R., Gibb, R. & Kolb, B. (2012). Prenatal stress produces sexually dimorphic and regionally-specific changes in gene expression in hippocampus and frontal cortex of developing rat offspring. Developmental Neuroscience, 33, 531–538. First citation in articleCrossrefGoogle Scholar

  • Nahum, M., Lee, H. & Merzenich, M. M. (2013). Principles of neuroplasticity-based rehabilitation. In M. M. MerzenichM. NahumT. M. VanVleetEds., Changing brains applying brain plasticity to advance and recover human ability (Vol. 207, pp. 141–171). Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • Nijland, R., Kwakkel, G., Bakers, J. & van Wegen, E. (2011). Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: A systematic review. International Journal of Stroke, 6, 425–433. First citation in articleCrossrefGoogle Scholar

  • Nudo, R. J. (2011). Neural bases of recovery after brain injury. Journal of Communication Disorders, 44, 515–520. First citation in articleCrossrefGoogle Scholar

  • Nudo, R. J. (2013). Recovery after brain injury: Mechanisms and principles. Frontiers in Human Neuroscience, 7, 887. doi: 10.3389/fnhum.2013.00887 First citation in articleCrossrefGoogle Scholar

  • Nudo, R. J., Milliken, G. W., Jenkins, W. M. & Merzenich, M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. Journal of Neuroscience, 16, 785–807. First citation in articleCrossrefGoogle Scholar

  • Nudo, R. J., Plautz, E. J. & Milliken, G. W. (1997). Adaptive plasticity in primate motor cortex as a consequence of behavioral experience and neuronal injury. Seminars in Neuroscience, 9, 13–23. First citation in articleCrossrefGoogle Scholar

  • Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science, 272, 1791–1794. First citation in articleCrossrefGoogle Scholar

  • Paolucci, S., Antonucci, G., Grasso, M. G., Morelli, D., Troisi, E., Coiro, P., … Bragoni, M. (2001). Post-stroke depression, antidepressant treatment and rehabilitation results – A case-control study. Cerebrovascular Diseases, 12, 264–271. First citation in articleCrossrefGoogle Scholar

  • Peschke, D., Kohler, M., Schenk, L. & Kuhlmey, A. (2014). A cross-sectorial analysis of physio and occupational therapy pathways after stroke. Gesundheitswesen, 76, 79–85. First citation in articleCrossrefGoogle Scholar

  • Pulvermuller, F. & Berthier, M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology, 22, 563–599. First citation in articleCrossrefGoogle Scholar

  • Pulvermuller, F., Neininger, B., Elbert, T., Mohr, B., Rockstroh, B., Koebbel, P. & Taub, E. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke, 32, 1621–1626. First citation in articleCrossrefGoogle Scholar

  • Rámon y Cajal, R. (1928). Degeneration and regeneration of the nervous system. London, UK: Oxford University Press. First citation in articleGoogle Scholar

  • Recanzone, G. H., Merzenich, M. M. & Dinse, H. R. (1992). Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation. Cerebral Cortex, 2, 181–196. First citation in articleCrossrefGoogle Scholar

  • Reiss, A. P., Wolf, S. L., Hammel, E. A., McLeod, E. L. & Williams, E. A. (2012). Constraint-induced movement therapy (CIMT): Current perspectives and future directions. Stroke Research and Treatment, 2012, 159391. First citation in articleCrossrefGoogle Scholar

  • Richards, L. G., Stewart, K. C., Woodbury, M. L., Senesac, C. & Cauraugh, J. H. (2008). Movement-dependent stroke recovery: A systematic review and meta-analysis of TMS and fMR1 evidence. Neuropsychologia, 46, 3–11. First citation in articleCrossrefGoogle Scholar

  • Rickards, T., Mark, V., Taub, E., Sterling, C., Vaughan, L. & Uswatte, G. (2012). Efficacy of constraint-induced movement therapy in patients with hemiparetic progressive multiple sclerosis. Archives of Clinical Neuropsychology, 27, 663–664. First citation in articleGoogle Scholar

  • Rickards, T., Sterling, C., Taub, E., Perkins-Hu, C., Gauthier, L., Graham, M. , … Uswatte, G. (2014). Diffusion tensor imaging study of the response to constraint-induced movement therapy of children with hemiparetic cerebral palsy and adults with chronic stroke. Archives of Physical Medicine and Rehabilitation, 95, 506–514. First citation in articleCrossrefGoogle Scholar

  • Robinson, T. E. & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47, 33–46. First citation in articleCrossrefGoogle Scholar

  • Sale, A., Berardi, N. & Maffei, L. (2009). Enrich the environment to empower the brain. Trends in Neurosciences, 32, 233–239. First citation in articleCrossrefGoogle Scholar

  • Silasi, G. & Kolb, B. (2007). Chronic inhibition of cyclooxygenase-2 induces dendritic hypertrophy and limited functional improvement following motor cortex stroke. Neuroscience, 144, 1160–1168. First citation in articleCrossrefGoogle Scholar

  • Stiftung Deutsche Schlaganfall-Hilfe. (2016). Die Errkankung Schlaganfall [Stroke Disorder]. Retrieved from www.schlaganfall-hilfe.de/der-schlaganfall First citation in articleGoogle Scholar

  • Takeuchi, N. & Izumi, S.-I. (2012a). Maladaptive plasticity for motor recovery after stroke: Mechanisms and approaches. Neural Plasticity, 2012, 359728. doi: 10.1155/2012/359728 First citation in articleCrossrefGoogle Scholar

  • Takeuchi, N. & Izumi, S.-I. (2012b). Noninvasive brain stimulation for motor recovery after stroke: Mechanisms and future views. Stroke Research and Treatment, 2012, 584727. First citation in articleCrossrefGoogle Scholar

  • Takeuchi, N. & Izumi, S.-I. (2013). Rehabilitation with poststroke motor recovery: A review with a focus on neural plasticity. Stroke Research and Treatment, 2013, 128641. First citation in articleCrossrefGoogle Scholar

  • Taub, E. (2012). The behavior-analytic origins of constraint-induced movement therapy: An example of behavioral neurorehabilitation. Behavior Analyst, 35, 155–178. First citation in articleCrossrefGoogle Scholar

  • Taub, E., Uswatte, G., Bowman, M. H., Mark, V. W., Delgado, A., Bryson, C., … Bishop-McKay, S. (2013). Constraint-induced movement therapy combined with conventional neurorehabilitation techniques in chronic stroke, patients with plegic hands: A case series. Archives of Physical Medicine and Rehabilitation, 94, 86–94. First citation in articleCrossrefGoogle Scholar

  • Teskey, G. C., Monfils, M. H., Silasi, G. & Kolb, B. (2006). Neocortical kindling is associated with opposing alterations in dendritic morphology in neocortical layer V and striatum from neocortical layer III. Synapse, 59, 1–9. First citation in articleCrossrefGoogle Scholar

  • Truelsen, T., Piechowski-Jozwiak, B., Bonita, R., Mathers, C., Bogousslavsky, J. & Boysen, G. (2006). Stroke incidence and prevalence in Europe: A review of available data. European Journal of Neurology, 13, 581–598. First citation in articleCrossrefGoogle Scholar

  • Uswatte, G. & Taub, E. (2013). Constraint-induced movement therapy: A method for harnessing neuroplasticity to treat motor disorders. In M. M. MerzenichM. NahumT. M. VanVleetEds., Changing Brains Applying Brain Plasticity to Advance and RecoverHuman Ability (Vol. 207, pp. 379–401). Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • Weiss, T. (2016). Plasticity and cortical reorganization associated with pain. Zeitschrift für Psychologie, 224, 71–79. doi: 10.1027/2151-2604/a000241 First citation in articleLinkGoogle Scholar

  • Weiss, T., Miltner, W. H. R., Adler, T., Bruckner, L. & Taub, E. (1999). Decrease in phantom limb pain associated with prosthesis-induced increased use of an amputation stump in humans. Neuroscience Letters, 272, 131–134. First citation in articleCrossrefGoogle Scholar

  • White, J. H., Bartley, E., Janssen, H., Jordan, L. A. & Spratt, N. (2015). Exploring stroke survivor experience of participation in an enriched environment: A qualitative study. Disability and Rehabilitation, 37, 593–600. First citation in articleCrossrefGoogle Scholar

  • World Health Organization. (2001). International classification of functioning disability health ICF. Geneva, Switzerland: Author. First citation in articleGoogle Scholar

  • World Health Organization. (2016). The atlas of heart disease and stroke. Cardiovascular Disease. Retrieved from http://www.who.int/cardiovascular_diseases/resources/atlas/en/ First citation in articleGoogle Scholar

  • Wittenberg, G. F., Chen, R., Ishii, K., Bushara, K. O., Taub, E., Gerber, L. H., … Cohen, L. G. (2003). Constraint-induced therapy in stroke: Magnetic-stimulation motor maps and cerebral activation. Neurorehabilitation and Neural Repair, 17, 48–57. First citation in articleCrossrefGoogle Scholar

  • Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P., Blanton, S. R., Nichols-Larsen, D. S., … Sawaki, L. (2010). The EXCITE stroke trial comparing early and delayed constraint-induced movement therapy. Stroke, 41, 2309–2315. First citation in articleCrossrefGoogle Scholar