Skip to main content
Original Article

Change in Movement-Related Cortical Potentials Following Constraint-Induced Movement Therapy (CIMT) After Stroke

Published Online:https://doi.org/10.1027/2151-2604/a000245

Abstract. Patients with chronic stroke were given Constraint-Induced Movement Therapy (CIMT) over an intensive two-week course of treatment. The intervention resulted in a large improvement in use of the more-affected upper extremity in the laboratory and in the real-world environment. High-resolution electroencephalography (EEG) showed that the treatment produced marked changes in cortical activity that correlated with the significant rehabilitative effects. Repetitive unilateral self-paced voluntary movements showed a large increase after treatment in the amplitudes of the late components of the Bereitschaftspotential (BP) both in the hemisphere contralateral to the more-affected arm and in the ipsilateral hemisphere. Simultaneous electromyographic recordings (EMG) and other aspects of the data indicate that the emergence of the movement-related neural source in the healthy hemisphere was not due to mirror movements of the non-test hand and that the increase in BP amplitudes was not the result of an increase in the force or effort of the response pre- to post-treatment. The results are consistent with the rehabilitation treatment having produced a use-dependent cortical reorganization and is a case where the physiological data interdigitates with and provides additional credibility to the clinical data.

References

  • Armatas, C. A., Summers, J. J. & Bradshaw, J. L. (1994). Mirror movements in normal adult subjects. Journal of Clinical and Experimental Neuropsychology, 16, 405–413. First citation in articleCrossrefGoogle Scholar

  • Bauder, H., Taub, E. & Miltner, W. H. R. (2001). Behandlung motorischer Störungen nach Schlaganfall. Die Taubsche Bewegungsinduktionstherapie [Therapy of movement disorders after stroke]. Göttingen, Germany: Hogrefe. First citation in articleGoogle Scholar

  • Bonifer, N. M., Anderson, K. M. & Arciniegas, D. B. (2005). Constraint-induced therapy for moderate chronic upper extremity impairment after stroke. Brain Injury, 19, 323–330. First citation in articleCrossrefGoogle Scholar

  • Bowden, M. G., Embry, A. E., Perry, Lindsay A. & Duncan, P. W. (2012). Rehabilitation of walking after stroke. Current Treatment Options in Neurology, 14, 521–530. First citation in articleCrossrefGoogle Scholar

  • Bowden, M. G., Woodbury, M. L. & Duncan, P. W. (2013). Promoting neuroplasticity and recovery after stroke: Future directions for rehabilitation clinical trials. Current Opinion in Neurology, 26, 37–42. First citation in articleCrossrefGoogle Scholar

  • Brunia, C. H. M., van Boxtel, G. J. M. & Speelman, J. D. (2004). The bilateral origin of movement-related potentials preceding unilateral actions. Journal of Psychophysiology, 18, 140–148. First citation in articleLinkGoogle Scholar

  • Caramia, M. D., Iani, C. & Bernardi, G. (1996). Cerebral plasticity after stroke as revealed by ipsilateral responses to magnetic stimulation. Neuroreport, 7, 1756–1760. First citation in articleCrossrefGoogle Scholar

  • Carr, L. J., Harrison, L. M., Evans, A. L. & Stephens, J. A. (1993). Patterns of central motor reorganization in hemiplegic cerebral-palsy. Brain, 116, 1223–1247. First citation in articleCrossrefGoogle Scholar

  • Carson, R. G. (2005). Neural pathways mediating bilateral interactions between the upper limbs. Brain Research Reviews, 49, 641–662. First citation in articleCrossrefGoogle Scholar

  • Cooper, J. O., Heron, T. E. & Heward, W. L. (2013). Applied Behavior Analysis. New York, NY: Pearson. First citation in articleGoogle Scholar

  • Deecke, L. (2000). The Bereitschaftspotential as an electrophysiological tool for studying the cortical organization of human voluntary action. Supplements to Clinical neurophysiology, 53, 199–206. First citation in articleCrossrefGoogle Scholar

  • Deecke, L. (2015). Experiments into readiness for action-50 years Bereitschaftspotential. Klinische Neurophysiologie, 46, 19–27. First citation in articleCrossrefGoogle Scholar

  • Deecke, L., Grozinger, B. & Kornhuber, H. H. (1976). Voluntary finger movement in man – Cerebral potentials and theory. Biological Cybernetics, 23, 99–119. First citation in articleCrossrefGoogle Scholar

  • Deecke, L. & Kornhuber, H. H. (1978). Electrical sign of participation of mesial supplementary motor cortex in human voluntary finger movement. Brain Research, 159, 473–476. First citation in articleCrossrefGoogle Scholar

  • Deecke, L., Scheid, P. & Kornhube, H. H. (1969). Distribution of readiness potential pre-motion positivity and motor potenial of human cerebral cortex preceding voluntary finger movements. Experimental Brain Research, 7, 158–168. First citation in articleCrossrefGoogle Scholar

  • Dobkin, B. H. (2004). Strategies for stroke rehabilitation. Lancet Neurology, 3, 528–536. First citation in articleCrossrefGoogle Scholar

  • Duff, S. V., He, J. X., Nelsen, M. A., Lane, C. J., Rowe, V. T., Wolf, S. L., … Winstein, C. J. (2015). Interrater reliability of the Wolf Motor Function Test-Functional Ability Scale: Why it matters. Neurorehabilitation and Neural Repair, 29, 436–443. First citation in articleCrossrefGoogle Scholar

  • Gauthier, L. V., Mark, V. W., Taub, E., McCullars, A., Barghi, A., Rickards, T., … Uswatte, G. (2014). Motor recovery from constraint induced movement therapy is not constrained by extent of tissue damage following stroke. Restorative Neurology and Neuroscience, 32, 755–765. First citation in articleGoogle Scholar

  • Gauthier, L. V., Taub, E., Mark, V. W., Barghi, A. & Uswatte, G. (2012). Atrophy of spared gray matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke. Stroke, 43, 453–457. First citation in articleCrossrefGoogle Scholar

  • Gratton, G., Coles, M. G. H. & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468–484. First citation in articleCrossrefGoogle Scholar

  • Hara, Y. (2015). Brain plasticity and rehabilitation in stroke patients. Journal of Nippon Medical School, 82, 7–16. First citation in articleCrossrefGoogle Scholar

  • Honda, M., Nagamine, T., Fukuyama, H., Yonekura, Y., Kimura, J. & Shibasaki, H. (1997). Movement-related cortical potentials and regional cerebral blood flow change in patients with stroke after motor recovery. Journal of the Neurological Sciences, 146, 117–126. First citation in articleCrossrefGoogle Scholar

  • Jankelowitz, S. K. & Colebatch, J. G. (2005). Movement related potentials in acutely induced weakness and stroke. Experimental Brain Research, 161, 104–113. First citation in articleCrossrefGoogle Scholar

  • Johansson, B. B. (2011). Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurologica Scandinavica, 123, 147–159. First citation in articleCrossrefGoogle Scholar

  • Kitamura, J., Shabasaki, H., Terashi, A. & Taskima, K. (1999). Cortical potentials preceding voluntary finger movement in patients with focal cerebellar lesion. Clinical Neurophysiology, 110, 126–132. First citation in articleCrossrefGoogle Scholar

  • Kolb, B. & Muhammad, A. (2014). Harnessing the power of neuroplasticity for intervention. Frontiers in Human Neuroscience, 8, 377. doi: 10.3389/fnhum.2014.00377 First citation in articleCrossrefGoogle Scholar

  • Kopp, B., Kunkel, A., Flor, H., Platz, T., Rose, U., Mauritz, K.H., … Taub, E. (1997). The arm motor ability test: Reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Archives of Physical Medicine and Rehabilitation, 78, 615–620. First citation in articleCrossrefGoogle Scholar

  • Kopp, B., Kunkel, A., Muhlnickel, W., Villringer, K., Taub, E. & Flor, H. (1999). Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport, 10, 807–810. First citation in articleCrossrefGoogle Scholar

  • Kornhuber, H. & Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen – Bereitschaftspotential und reafferente Potentiale [Changes in cortical potentials in involuntary and voluntary movements of humans – Readiness and reafferent potentials]. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere, 284, 1–17. First citation in articleCrossrefGoogle Scholar

  • Kwakkel, G., Veerbeek, J. M., van Wegen, E. E. H. & Wolf, S. L. (2015). Constraint-induced movement therapy after stroke. Lancet Neurology, 14, 224–234. First citation in articleCrossrefGoogle Scholar

  • Leuthold, H. & Jentzsch, I. (2002). Distinguishing neural sources of movement preparation and execution - An electrophysiological analysis. Biological Psychology, 60, 173–198. First citation in articleCrossrefGoogle Scholar

  • Liepert, J. (2012). Evidence-based methods in motor rehabilitation after stroke. Fortschritte Der Neurologie Psychiatrie, 80, 388–393. First citation in articleCrossrefGoogle Scholar

  • Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E. & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 1210–1216. First citation in articleCrossrefGoogle Scholar

  • Liepert, J., Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C., Taub, E. & Weiller, C. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters, 250, 5–8. First citation in articleCrossrefGoogle Scholar

  • McCulloch, K., Cook, E. W., Fleming, W. C., Novack, T. A. & Taub, E. (1988). A reliable test of upper extremity ADL function. Archives of Physical Medicine and Rehabilitation, 69, 755. First citation in articleGoogle Scholar

  • Milliken, G. W., Stokic, D. S. & Tarkka, I. M. (1999). Sources of movement-related cortical potentials derived from foot, finger, and mouth movements. Journal of Clinical Neurophysiology, 16, 361–372. First citation in articleCrossrefGoogle Scholar

  • Miltner, W. H. R. (2016). Plasticity and reorganization in the rehabilitation of stroke: The Constraint-Induced Movement Therapy (CIMT) example. Zeitschrift für Psychologie, 91–101. doi: 10.1027/2151-2604/a000243 First citation in articleLinkGoogle Scholar

  • Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C. & Taub, E. (1999). Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke – A replication. Stroke, 30, 586–592. First citation in articleCrossrefGoogle Scholar

  • Morris, D. M., Uswatte, G., Crago, J. E., Cook, E. W. & Taub, E. (2001). The reliability of the Wolf motor function test for assessing upper extremity function after stroke. Archives of Physical Medicine and Rehabilitation, 82, 750–755. First citation in articleCrossrefGoogle Scholar

  • Nijland, R., van Wegen, E., Verbunt, J., van Wijk, R., van Kordelaar, J. & Kwakkel, G. (2010). A comparison of two validated tests for upper limb function after stroke: The Wolf motor function test and the action research arm test. Journal of Rehabilitation Medicine, 42, 694–696. First citation in articleCrossrefGoogle Scholar

  • Nudo, R. J. (2011). Neural bases of recovery after brain injury. Journal of Communication Disorders, 44, 515–520. First citation in articleCrossrefGoogle Scholar

  • Richards, L. G., Stewart, K. C., Woodbury, M. L., Senesac, C. & Cauraugh, J. H. (2008). Movement-dependent stroke recovery: A systematic review and meta-analysis of TMS and fMR1 evidence. Neuropsychologia, 46, 3–11. First citation in articleCrossrefGoogle Scholar

  • Rickards, T., Sterling, C., Taub, E., Perkins-Hu, C., Gauthier, L., Graham, M, … Uswatte, G. (2014). Diffusion tensor imaging study of the response to constraint-induced movement therapy of children with hemiparetic cerebral palsy and adults with chronic stroke. Archives of Physical Medicine and Rehabilitation, 95, 506–514. First citation in articleCrossrefGoogle Scholar

  • Rossini, P. M. & Dal Forno, G. (2004). Neuronal post-stroke plasticity in the adult. Restorative Neurology and Neuroscience, 22, 193–206. First citation in articleGoogle Scholar

  • Shibasaki, H., Barrett, G., Halliday, E. & Halliday, A. M. (1981). Components of the movement-related cortical potential. Electroencephalography and Clinical Neurophysiology, 52, S3. First citation in articleGoogle Scholar

  • Shibasaki, H. & Hallett, Mark (2006). What is the Bereitschaftspotential? Clinical Neurophysiology, 117, 2341–2356. First citation in articleCrossrefGoogle Scholar

  • Shibasaki, H. & Nagae, K. (1984). Mirror movement – Application of movement-related cortical potentials. Annals of Neurology, 15, 299–302. First citation in articleCrossrefGoogle Scholar

  • Tarkka, I. M. & Hallett, M. (1991). Topography of scalp-recorded motor potenials in human finger movements. Journal of Clinical Neurophysiology, 8, 331–341. First citation in articleCrossrefGoogle Scholar

  • Taub, E. (2012). The behavior-analytic origins of constraint-induced movement therapy: An example of behavioral neurorehabilitation. Behavior Analyst, 35, 155–178. First citation in articleCrossrefGoogle Scholar

  • Taub, E., Miller, N. E., Novack, T. A., Cook, E. W., Fleming, W. C., Nepomuceno, C. S., … Crago, J. E. (1993). Technique to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, 74, 347–354. First citation in articleGoogle Scholar

  • Tecchio, F., Zappasodi, F., Tombini, M., Oliviero, A., Pasqualetti, P., Vernieri, F., … Rossini, P. M. (2006). Brain plasticity in recovery from stroke: An MEG assessment. Neuroimage, 32, 1326–1334. First citation in articleCrossrefGoogle Scholar

  • Traversa, R., Cicinelli, P., Oliveri, M., Palmieri, M. G., Filippi, M. M., Pasqualetti, P. & Rossini, P. M. (2000). Neurophysiological follow-up of motor cortical output in stroke patients. Clinical Neurophysiology, 111, 1695–1703. First citation in articleCrossrefGoogle Scholar

  • Uswatte, G., Taub, E., Morris, D., Light, K. & Thompson, P. A. (2006). The Motor Activity Log-28 – Assessing daily use of the hemiparetic arm after stroke. Neurology, 67, 1189–1194. First citation in articleCrossrefGoogle Scholar

  • Uswatte, G., Taub, E., Morris, D., Vignolo, M. & McCulloch, K. (2005). Reliability and validity of the upper-extremity motor activity Log-14 for measuring real-world arm use. Stroke, 36, 2493–2496. First citation in articleCrossrefGoogle Scholar

  • Uswatte, G. & Taub, E. (2013). Constraint-induced movement therapy: A method for harnessing neuroplasticity to treat motor disorders. In M. M. MerzenichM. NahumT. M. VanVleetEds., Changing Brains Applying Brain Plasticity to Advance and Recover Human Ability (Vol. 207, pp. 379–401). Amsterdam, The Netherlands: Elsevier. First citation in articleGoogle Scholar

  • Wiese, H., Stude, P., Nebel, K., Osenberg, D., Volzke, V., Ischebeck, W., … Keidel, M. (2004). Impaired movement-related potentials in acute frontal traumatic brain injury. Clinical Neurophysiology, 115, 289–298. First citation in articleCrossrefGoogle Scholar

  • Wittenberg, G. F., Chen, R., Ishii, K., Bushara, K. O., Eckloff, S., Croarkin, E., … Cohen, L. G. (2003). Constraint-induced therapy in stroke: Magnetic-stimulation motor maps and cerebral activation (Vol. 17, pg 48, 2003). Neurorehabilitation and Neural Repair, 17, 197. First citation in articleCrossrefGoogle Scholar

  • Wittenberg, G. F., Chen, R., Ishii, K., Bushara, K. O., Taub, E., Gerber, L. H., … Cohen, L. G. (2003). Constraint-induced therapy in stroke: Magnetic-stimulation motor maps and cerebral activation. Neurorehabilitation and Neural Repair, 17, 48–57. First citation in articleCrossrefGoogle Scholar

  • Wittenberg, G. F. & Schaechter, J. D. (2009). The neural basis of constraint-induced movement therapy. Current Opinion in Neurology, 22, 582–588. First citation in articleCrossrefGoogle Scholar

  • Wolf, S. L., Catlin, P. A., Ellis, M., Archer, A. L., Morgan, B. & Piacentino, A. (2001). Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke, 32, 1635–1639. First citation in articleCrossrefGoogle Scholar

  • Wolf, S. L., Thompson, P. A., Estes, E., Lonergan, T., Merchant, R. & Richardson, N. (2012). The EXCITE trial: Analysis of “Noncompleted” Wolf motor function test items. Neurorehabilitation and Neural Repair, 26, 178–187. First citation in articleCrossrefGoogle Scholar

  • Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P, Blanton, S. R., Nichols-Larsen, D. S., … Sawaki, L. (2010). The EXCITE stroke trial comparing early and delayed constraint-induced movement therapy. Stroke, 41, 2309–2315. First citation in articleCrossrefGoogle Scholar