Skip to main content
Published Online:https://doi.org/10.1027/2151-2604/a000260

Abstract. Learning from errors and feedback is an important topic in the Education Sciences as it relates as much to student achievement, teacher development, and learning in general. Its ramifications connect with reflective practice, inhibition of spontaneous and erroneous answers, conceptual change, self-regulated learning, assessment, and metacognition. Research in education has studied the use of feedback from different perspectives (e.g., cognitivism, behaviorism, socioculturalism, constructivism) but has rarely considered the way the brain processes feedback for learning. Therefore, this article reviews the scientific literature linking neural correlates of feedback processing to general or specific learning outcomes, published from 2005 to 2015. From a total of 229 search results, 30 scientific publications were selected according to predefined selection criteria.

References *References marked with an asterisk indicate studies included in the review.

  • Ajjawi, R. & Boud, D. (2015). Researching feedback dialogue: An interactional analysis approach. Assessment & Evaluation in Higher Education, 42, 252–265. doi: 10.1080/ 02602938.2015.1102863 First citation in articleCrossrefGoogle Scholar

  • *Bakic, J., Jepma, M., De Raedt, R. & Pourtois, G. (2014). Effects of positive mood on probabilistic learning: Behavioral and electrophysiological correlates. Biological Psychology, 103, 223–232. doi: 10.1016/j.biopsycho.2014.09.012 First citation in articleCrossrefGoogle Scholar

  • Beauchamp, M. H. & Beauchamp, C. (2012). Understanding the neuroscience and education connection: Themes emerging from a review of the literature. In S. Della SalaM. AndersonEds., Neuroscience in education: The good, the bad, and the ugly (pp. 13–30). New York, NY: Oxford University Press. First citation in articleGoogle Scholar

  • Beauchamp, C. & Beauchamp, M. H. (2013). Boundary as bridge: An analysis of the educational neuroscience literature from a boundary perspective. Educational Psychology Review, 25, 47–67. doi: 10.1007/s10648-012-9207-x First citation in articleCrossrefGoogle Scholar

  • *Bellebaum, C. & Daum, I. (2008). Learning‐related changes in reward expectancy are reflected in the feedback‐related negativity. European Journal of Neuroscience, 27, 1823–1835. doi: 10.1111/j.1460-9568.2008.06138.x First citation in articleCrossrefGoogle Scholar

  • *Bellebaum, C., Kobza, S., Thiele, S. & Daum, I. (2010). It was not MY fault: Event-related brain potentials in active and observational learning from feedback. Cerebral Cortex, 20, 2874–2883. doi: 10.1093/cercor/bhq038 First citation in articleCrossrefGoogle Scholar

  • Chase, H. W., Swainson, R., Durham, L., Benham, L. & Cools, R. (2011). Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning. Journal of Cognitive Neuroscience, 23, 936–946. doi: 10.1162/jocn.2010.21456 First citation in articleCrossrefGoogle Scholar

  • Daw, N. D., Niv, Y. & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711. doi: 10.1038/nn1560 First citation in articleCrossrefGoogle Scholar

  • della Chiesa, B., Christoph, V. & Hinton, C. (2009). How many brains does it take to build a new light? Knowledge management challenges of a transdisciplinary project. Mind, Brain, and Education, 3, 16–25. doi: 10.1111/j.1751-228X.2008.01049.x First citation in articleCrossrefGoogle Scholar

  • Dion, J.-S. (2015). Bases théoriques pour l’étude de l’autorégulation enseignante par électroencéphalographie : vers de nouvelles recherches en neuroéducation [Theoretical bases for the study of self-regulation in learning by electroencephalography: Towards new research in neuroeducation]. Approche Neuropsychologique des Apprentissages chez l’Enfant (ANAE), 27, 63–70. First citation in articleGoogle Scholar

  • *Eppinger, B., Kray, J., Mock, B. & Mecklinger, A. (2008). Better or worse than expected? Aging, learning, and the ERN. Neuropsychologia, 46, 521–539. doi: 10.1016/j.neuropsychologia.2007.09.001 First citation in articleCrossrefGoogle Scholar

  • *Eppinger, B., Mock, B. & Kray, J. (2009). Developmental differences in learning and error processing: Evidence from ERPs. Psychophysiology, 46, 1043–1053. doi: 10.1111/j.1469-8986.2009.00838.x First citation in articleCrossrefGoogle Scholar

  • *Eppinger, B., Schuck, N. W., Nystrom, L. E. & Cohen, J. D. (2013). Reduced striatal responses to reward prediction errors in older compared with younger adults. The Journal of Neuroscience, 33, 9905–9912. doi: 10.1523/JNEUROSCI.2942-12.2013 First citation in articleCrossrefGoogle Scholar

  • *Ernst, B. & Steinhauser, M. (2012). Feedback-related brain activity predicts learning from feedback in multiple-choice testing. Cognitive, Affective, & Behavioral Neuroscience, 12, 323–336. doi: 10.3758/s13415-012-0087-9 First citation in articleCrossrefGoogle Scholar

  • *Ernst, B. & Steinhauser, M. (2015). Effects of invalid feedback on learning and feedback-related brain activity in decision-making. Brain and Cognition, 99, 78–86. doi: 10.1016/j.bandc.2015.07.006 First citation in articleCrossrefGoogle Scholar

  • Evans, C. (2013). Making sense of assessment feedback in higher education. Review of Educational Research, 83, 70–120. doi: 10.3102/0034654312474350 First citation in articleCrossrefGoogle Scholar

  • Ferdinand, N. K., Weiten, A., Mecklinger, A. & Kray, J. (2010). Error-induced learning as a resource-adaptive process in young and elderly individuals. In M. W. CrockerJ. SiekmannEds., Resource-adaptive cognitive processes (pp. 55–76). Berlin, Germany: Springer-Verlag. doi: 10.1007/978-3-540-89408-7_4 First citation in articleCrossrefGoogle Scholar

  • *Frank, M. J., D’Lauro, C. & Curran, T. (2007). Cross-task individual differences in error processing: Neural, electrophysiological, and genetic components. Cognitive, Affective, & Behavioral Neuroscience, 7, 297–308. doi: 10.3758/CABN.7.4.297 First citation in articleCrossrefGoogle Scholar

  • Grammer, J. K., Carrasco, M., Gehring, W. J. & Morrison, F. J. (2014). Age-related changes in error processing in young children: A school-based investigation. Developmental Cognitive Neuroscience, 9, 93–105. doi: 10.1016/j.dcn.2014.02.001 First citation in articleCrossrefGoogle Scholar

  • *Hämmerer, D., Li, S. C., Müller, V. & Lindenberger, U. (2011). Life span differences in electrophysiological correlates of monitoring gains and losses during probabilistic reinforcement learning. Journal of Cognitive Neuroscience, 23, 579–592. doi: 10.1162/jocn.2010.21475 First citation in articleCrossrefGoogle Scholar

  • Hattie, J. & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi: 10.3102/003465430298487 First citation in articleCrossrefGoogle Scholar

  • Hauser, T. U., Iannaccone, R., Stämpfli, P., Drechsler, R., Brandeis, D., Walitza, S. & Brem, S. (2014). The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organization. NeuroImage, 84, 159–168. doi: 10.1016/j.neuroimage.2013.08.028 First citation in articleCrossrefGoogle Scholar

  • *Hester, R., Murphy, K., Brown, F. L. & Skilleter, A. J. (2010). Punishing an error improves learning: The influence of punishment magnitude on error-related neural activity and subsequent learning. The Journal of Neuroscience, 30, 15600–15607. doi: 10.1523/JNEUROSCI.2565-10.2010 First citation in articleCrossrefGoogle Scholar

  • Holroyd, C. B. & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. doi: 10.1037/0033-295X.109.4.679 First citation in articleCrossrefGoogle Scholar

  • Kalra, P. & O’Keeffe, J. K. (2011). Communication in mind, brain, and education: Making disciplinary differences explicit. Mind, Brain, and Education, 5, 163–171. doi: 10.1111/j.1751-228X.2011.01124.x First citation in articleCrossrefGoogle Scholar

  • *Kang, S. K., Hirsh, J. B. & Chasteen, A. L. (2010). Your mistakes are mine: Self-other overlap predicts neural response to observed errors. Journal of Experimental Social Psychology, 46, 229–232. doi: 10.1016/j.jesp.2009.09.012 First citation in articleCrossrefGoogle Scholar

  • Knox, R. (2016). Mind, brain, and education: A transdisciplinary field. Mind, Brain, and Education, 10, 4–9. doi: 10.1111/mbe.12102 First citation in articleCrossrefGoogle Scholar

  • Luft, C. D. B. (2014). Learning from feedback: The neural mechanisms of feedback processing facilitating better performance. Behavioural Brain Research, 261, 356–368. doi: 10.1016/j.bbr.2013.12.043 First citation in articleCrossrefGoogle Scholar

  • *Luft, C. D. B., Takase, E. & Bhattacharya, J. (2014). Processing graded feedback: Electrophysiological correlates of learning from small and large errors. Journal of Cognitive Neuroscience, 26, 1180–1193. doi: 10.1162/jocn_a_00543 First citation in articleCrossrefGoogle Scholar

  • *Lukie, C. N., Montazer-Hojat, S. & Holroyd, C. B. (2014). Developmental changes in the reward positivity: An electrophysiological trajectory of reward processing. Developmental Cognitive Neuroscience, 9, 191–199. doi: 10.1016/j.dcn.2014.04.003 First citation in articleCrossrefGoogle Scholar

  • *Mai, X., Tardif, T., Doan, S. N., Liu, C., Gehring, W. J. & Luo, Y.-J. (2011). Brain activity elicited by positive and negative feedback in preschool-aged children. PLoS One, 6, e18774. doi: 10.1371/journal.pone.0018774 First citation in articleCrossrefGoogle Scholar

  • *Mangels, J. A., Butterfield, B., Lamb, J., Good, C. & Dweck, C. S. (2006). Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model. Social Cognitive and Affective Neuroscience, 1, 75–86. doi: 10.1093/scan/nsl013 First citation in articleCrossrefGoogle Scholar

  • *Mangels, J. A., Good, C., Whiteman, R. C., Maniscalco, B. & Dweck, C. S. (2012). Emotion blocks the path to learning under stereotype threat. Social Cognitive and Affective Neuroscience, 7, 230–241. doi: 10.1093/scan/nsq100 First citation in articleCrossrefGoogle Scholar

  • *Marco-Pallarés, J., Krämer, U. M., Strehl, S., Schröder, A. & Münte, T. F. (2010). When decisions of others matter to me: An electrophysiological analysis. BMC Neuroscience, 11, 86. doi: 10.1186/1471-2202-11-86 First citation in articleCrossrefGoogle Scholar

  • Narciss, S., Sosnovsky, S., Schnaubert, L., Andrès, E., Eichelmann, A., Goguadze, G. & Melis, E. (2014). Exploring feedback and student characteristics relevant for personalizing feedback strategies. Computers & Education, 71, 56–76. doi: 10.1016/j.compedu.2013.09.011 First citation in articleCrossrefGoogle Scholar

  • *Newman-Norlund, R. D., Ganesh, S., van Schie, H. T., De Bruijn, E. R. & Bekkering, H. (2009). Self-identification and empathy modulate error-related brain activity during the observation of penalty shots between friend and foe. Social Cognitive and Affective Neuroscience, 4, 10–22. doi: 10.1093/scan/nsn028 First citation in articleCrossrefGoogle Scholar

  • Nicol, D. (2010). From monologue to dialogue: Improving written feedback processes in mass higher education. Assessment & Evaluation in Higher Education, 35, 501–517. doi: 10.1080/02602931003786559 First citation in articleCrossrefGoogle Scholar

  • Ordaz, S. J., Foran, W., Velanova, K. & Luna, B. (2013). Longitudinal growth curves of brain function underlying inhibitory control through adolescence. Journal of Neuroscience, 33, 18109–18124. doi: 10.1523/JNEUROSCI.1741-13.2013 First citation in articleCrossrefGoogle Scholar

  • *Peters, S., Braams, B. R., Raijmakers, M. E., Koolschijn, P. C. M. & Crone, E. A. (2014). The neural coding of feedback learning across child and adolescent development. Journal of Cognitive Neuroscience, 26, 1705–1720. doi: 10.1162/jocn_a_00594 First citation in articleCrossrefGoogle Scholar

  • *Pietschmann, M., Simon, K., Endrass, T. & Kathmann, N. (2008). Changes of performance monitoring with learning in older and younger adults. Psychophysiology, 45, 559–568. doi: 10.1111/j.1469-8986.2008.00651.x First citation in articleCrossrefGoogle Scholar

  • *Rak, N., Bellebaum, C. & Thoma, P. (2013). Empathy and feedback processing in active and observational learning. Cognitive, Affective, & Behavioral Neuroscience, 13, 869–884. doi: 10.3758/s13415-013-0187-1 First citation in articleCrossrefGoogle Scholar

  • *Sailer, U., Robinson, S., Fischmeister, F. P. S., Moser, E., Kryspin-Exner, I. & Bauer, H. (2007). Imaging the changing role of feedback during learning in decision-making. NeuroImage, 37, 1474–1486. doi: 10.1016/j.neuroimage.2007.07.012 First citation in articleCrossrefGoogle Scholar

  • Samuels, B. M. (2009). Can the differences between education and neuroscience be overcome by mind, brain, and education? Mind, Brain, and education, 3, 44–54. doi: 10.1111/j.1751-228X.2008.01052.x First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (2007). Behavioral dopamine signals. Trends in Neuroscience, 30, 203–209. doi: 10.1016/j.tins.2007.03.007 First citation in articleCrossrefGoogle Scholar

  • Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 1–9. doi: 10.1186/1744-9081-6-24 First citation in articleCrossrefGoogle Scholar

  • Shenhav, A., Botvinick, M. M. & Cohen, J. D. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79, 217–240. doi: 10.1016/j.neuron.2013.07.007 First citation in articleCrossrefGoogle Scholar

  • Tamnes, C. K., Walhovd, K. B., Torstveit, M., Sells, V. T. & Fjell, A. M. (2013). Performance monitoring in children and adolescents: A review of developmental changes in the error-related negativity and brain maturation. Developmental Cognitive Neuroscience, 6, 1–13. doi: 10.1016/j.dcn.2013.05.001 First citation in articleCrossrefGoogle Scholar

  • *van den Bos, W., Cohen, M. X., Kahnt, T. & Crone, E. A. (2012). Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning. Cerebral Cortex, 22, 1247–1255. doi: 10.1093/cercor/bhr198 First citation in articleCrossrefGoogle Scholar

  • *van den Bos, W., Güroğlu, B., van den Bulk, B. G., Rombouts, S. A. & Crone, E. A. (2009). Better than expected or as bad as you thought? The neurocognitive development of probabilistic feedback processing. Frontiers in Human Neuroscience, 3, 1–11. doi: 10.3389/neuro.09.052.2009 First citation in articleCrossrefGoogle Scholar

  • van der Helden, J. & Bekkering, H. (2014). The role of implicit and explicit feedback in learning and the implications for distance education techniques. In T. Volkan YuzerG. EbyEds., Handbook of research on emerging priorities and trends in distance education: Communication, pedagogy, and technology (pp. 367–384). Hershey, PA: IGI Global. First citation in articleGoogle Scholar

  • *van Duijvenvoorde, A. C., Zanolie, K., Rombouts, S. A., Raijmakers, M. E. & Crone, E. A. (2008). Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. The Journal of Neuroscience, 28, 9495–9503. doi: 10.1523/JNEUROSCI.1485-08.2008 First citation in articleCrossrefGoogle Scholar

  • *van Leijenhorst, L., Crone, E. A. & Bunge, S. A. (2006). Neural correlates of developmental differences in risk estimation and feedback processing. Neuropsychologia, 44, 2158–2170. doi: 10.1016/j.neuropsychologia.2006.02.002 First citation in articleCrossrefGoogle Scholar

  • Velanova, K., Wheeler, M. E. & Luna, B. (2008). Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cerebral Cortex, 18, 2505–2522. doi: 10.1093/cercor/bhn012 First citation in articleCrossrefGoogle Scholar

  • *Walsh, M. M. & Anderson, J. R. (2011). Modulation of the feedback-related negativity by instruction and experience. Proceedings of the National Academy of Sciences, 108, 19048–19053. doi: 10.1073/pnas.1117189108 First citation in articleCrossrefGoogle Scholar

  • *Walsh, M. M. & Anderson, J. R. (2013). Electrophysiological responses to feedback during the application of abstract rules. Journal of Cognitive Neuroscience, 25, 1986–2002. doi: 10.1162/jocn_a_00454 First citation in articleCrossrefGoogle Scholar

  • *Yu, R. & Zhou, X. (2006). Brain responses to outcomes of one’s own and other’s performance in a gambling task. Neuroreport, 17, 1747–1751. doi: 10.1097/01.wnr.0000239960.98813.50 First citation in articleCrossrefGoogle Scholar

  • B. J. ZimmermanD. H. Schunk (2011). Handbook of self-regulation of learning and performance. Abingdon, UK/New York, NY: Taylor & Francis. First citation in articleGoogle Scholar