Skip to main content
Original Article

The Learning Brain

Neuronal Recycling and Inhibition

Published Online:https://doi.org/10.1027/2151-2604/a000263

Abstract. Reading is an example of complex learning specific to human beings. In readers, an area of the brain is dedicated to the visual processing of letters and words, referred to as the visual word form area (VWFA). The existence of this brain area is paradoxical. Reading is too recent to be a phylogenic product of Darwinian evolution. It likely develops with intense school training via a neuroplastic ontogenic process of neuronal recycling: neurons in the lateral occipitotemporal lobe originally tuned to the visual recognition of stimuli, such as faces, objects, and animals, will be recycled for the visual recognition of letters and words. Thus, the VWFA inherits the intrinsic properties of these neurons, notably, mirror generalization, a process (or heuristic) applied to all visual stimuli that enables the recognition of a stimulus irrespective of its left-right orientation. On its own, this inherited property is not adapted to reading because it makes children confuse mirror letters, such as b and d in the Latin alphabet. In this article, we present evidence that inhibitory control is critical to avoid mirror errors inherited from the neuronal recycling process by blocking the mirror generalization heuristic in the context of reading. We subsequently argue that the “neuronal recycling + inhibitory control” law constitutes a general law of the learning brain by demonstrating that it may also account for the development of numeracy.

References

  • Ahr, E., Houdé, O. & Borst, G. (2016). Inhibition of the mirror generalization process in reading in school-aged children. Journal of Experimental Child Psychology, 145, 1–9. doi: 10.1016/j.jecp.2015.12.009 First citation in articleCrossrefGoogle Scholar

  • Ansari, D. (2012). Culture and education: new frontiers in brain plasticity. Trends in Cognitive Sciences, 16, 93–95. doi: 10.1016/j.tics.2011.11.016 First citation in articleCrossrefGoogle Scholar

  • Aron, A. R., Robbins, T. W. & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177. doi: 10.1016/j.tics.2004.02.010 First citation in articleCrossrefGoogle Scholar

  • Asso, D. & Wyke, M. (1971). Discrimination of spatially confusable letters by young children. Journal of Experimental Child Psychology, 11, 11–20. doi: 10.1016/0022-0965(71)90059-2 First citation in articleCrossrefGoogle Scholar

  • Axelrod, V. & Yovel, G. (2012). Hierarchical processing of face viewpoint in human visual cortex. The Journal of Neuroscience, 32, 2442–2452. doi: 10.1523/JNEUROSCI.4770-11.2012 First citation in articleCrossrefGoogle Scholar

  • Baker, C. I., Liu, J., Wald, L. L., Kwong, K. K., Benner, T. & Kanwisher, N. (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 9087–9092. doi: 10.1073/pnas.0703300104 First citation in articleCrossrefGoogle Scholar

  • Baylis, G. C. & Driver, J. (2001). Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal. Nature Neuroscience, 4, 937–942. doi: 10.1038/nn0901-937 First citation in articleCrossrefGoogle Scholar

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147. doi: 10.1037/0033-295x.94.2.115 First citation in articleCrossrefGoogle Scholar

  • Bolger, D. J., Perfetti, C. A. & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25, 92–104. doi: 10.1002/hbm.20124 First citation in articleCrossrefGoogle Scholar

  • Bornstein, M., Gross, C. & Wolf, J. (1978). Perceptual similarity of mirror images in infancy. Cognition, 6, 89–116. doi: 10.1016/0010-0277(78)90017-3 First citation in articleCrossrefGoogle Scholar

  • Borst, G., Ahr, E., Roell, M. & Houdé, O. (2015). The cost of blocking the mirror generalization process in reading: Evidence for the role of inhibitory control in discriminating letters with lateral mirror-image counterparts. Psychonomic Bulletin & Review, 22, 228–234. doi: 10.3758/s13423-014-0663-9 First citation in articleCrossrefGoogle Scholar

  • Borst, G., Cachia, A., Tissier, C., Ahr, E., Simon, G. & Houdé, O. (2016). Early cerebral constraints on reading skills in school-age children: An MRI study. Mind, Brain, and Education, 10, 47–54. doi: 10.1111/mbe.12098 First citation in articleCrossrefGoogle Scholar

  • Borst, G., Moutier, S. & Houdé, O. (2013). Negative priming in logicomathematical reasoning: The cost of blocking your intuition. In W. De NeysM. OsmanEds., New approaches in reasoning research (pp. 34–50). New York, NY: Psychology Press. doi: 10.4324/9781315879857 First citation in articleCrossrefGoogle Scholar

  • Borst, G., Poirel, N., Pineau, A., Cassotti, M. & Houdé, O. (2013). Inhibitory control efficiency in a Piaget-like class-inclusion task in school-age children and adults: A developmental negative priming study. Developmental Psychology, 49, 1366–1374. doi: 10.1037/a0029622 First citation in articleCrossrefGoogle Scholar

  • Changizi, M. & Shimojo, S. (2005). Character complexity and redundancy in writing systems over human history. Proceedings of the Royal Society B: Biological Sciences, 272, 267–275. doi: 10.1098/rspb.2004.2942 First citation in articleCrossrefGoogle Scholar

  • Changizi, M., Zhang, Q., Ye, H. & Shimojo, S. (2006). The structures of letters and symbols throughout human history are selected to match those found in objects in natural scenes. The American Naturalist, 167, E117–E139. doi: 10.1086/502806 First citation in articleCrossrefGoogle Scholar

  • Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., DehaeneLambertz, G., Hénaff, M. A. & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain : A Journal of Neurology, 123, 291–307. doi: 10.1093/brain/123.2.291 First citation in articleCrossrefGoogle Scholar

  • Cornell, J. M. (1985). Spontaneous mirror-writing in children. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 39, 174–179. doi: 10.1037/h0080122 First citation in articleCrossrefGoogle Scholar

  • Cubelli, R. & Della Sala, S. (2009). Mirror writing in pre-school children: A pilot study. Cognitive Processing, 10, 101–104. doi: 10.1007/s10339-008-0233-z First citation in articleCrossrefGoogle Scholar

  • Davidson, H. P. (1935). A study of the confusing letters b, d, p, and q. Pedagogical Seminary and Journal of Genetic Psychology, 42, 458–468. doi: 10.1080/08856559.1935.10534056 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (2004). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In S. DehaeneJ. DuhamelM. HauserG. RizzolattiEds., From monkey brain to human brain Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Dehaene, S. (2013). Inside the letterbox: How literacy transforms the human brain. Cerebrum, 7, 1–16. First citation in articleGoogle Scholar

  • Dehaene, S. & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262. doi: 10.1016/j.tics.2011.04.003 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Cohen, L., Morais, J. & Kolinsky, R. (2015). Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16, 234–244. doi: 10.1038/nrn3924 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Cohen, L., Sigman, M. & Vinckier, F. (2005). The neural code for written words: a proposal. Trends in Cognitive Sciences, 9, 335–341. doi: 10.1016/j.tics.2005.05.004 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Le Clec’H, G., Poline, J.-B., Le Bihan, D. & Cohen, L. (2002). The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13, 321–325. doi: 10.1097/00001756-200203040-00015 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Nakamura, K., Jobert, A., Kuroki, C., Ogawa, S. & Cohen, L. (2010). Why do children make mirror errors in reading? Neural correlates of mirror invariance in the visual word form area. NeuroImage, 49, 1837–1848. doi: 10.1016/j.neuroimage.2009.09.024 First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., … Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330, 1359–1364. doi: 10.1126/science.1194140 First citation in articleCrossrefGoogle Scholar

  • Diamond, A., Barnett, W. S., Thomas, J. & Munro, S. (2007). Preschool program improves cognitive control. Science, 318, 1387–1388. doi: 10.1126/science.1151148 First citation in articleCrossrefGoogle Scholar

  • Diamond, A. & Goldman-Rakic, P. S. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 24–40. doi: 10.1007/BF00248277 First citation in articleCrossrefGoogle Scholar

  • Dilks, D. D., Julian, J. B., Kubilius, J., Spelke, E. S. & Kanwisher, N. (2011). Mirror-image sensitivity and invariance in object and scene processing pathways. The Journal of Neuroscience, 31, 11305–11312. doi: 10.1523/JNEUROSCI.1935-11.2011 First citation in articleCrossrefGoogle Scholar

  • Dormal, V. & Pesenti, M. (2009). Common and specific contributions of the intraparietal sulci to numerosity and length processing. Human Brain Mapping, 30, 2466–2476. doi: 10.1002/hbm.20677 First citation in articleCrossrefGoogle Scholar

  • Duñabeitia, J. A., Molinaro, N. & Carreiras, M. (2011). Through the looking-glass: Mirror reading. NeuroImage, 54, 3004–3009. doi: 10.1016/j.neuroimage.2010.10.079 First citation in articleCrossrefGoogle Scholar

  • Dundas, E. M., Plaut, D. C. & Behrmann, M. (2013). The joint development of hemispheric lateralization for words and faces. Journal of Experimental Psychology. General, 142, 348–358. doi: 10.1037/a0029503 First citation in articleCrossrefGoogle Scholar

  • Fischer, J.-P. & Tazouti, Y. (2012). Unraveling the mystery of mirror writing in typically developing children. Journal of Educational Psychology, 104, 193–205. doi: 10.1037/a0025735 First citation in articleCrossrefGoogle Scholar

  • Freiwald, W. A. & Tsao, D. Y. (2010). Functional compartmentalization and viewpoint generalization within the macaque face-processing system. Science, 330, 845–851. doi: 10.1126/science.1194908.Functional First citation in articleCrossrefGoogle Scholar

  • Gould, S. J. (1991). Exaptation: A crucial tool for an evolutionary psychology. Journal of Social Issues, 47, 43–65. doi: 10.1111/j.1540-4560.1991.tb01822.x First citation in articleCrossrefGoogle Scholar

  • Gould, S. J. & Vrba, E. S. (1982). Exaptation-A missing term in the science of form. Paleobiology, 8, 4–15. doi: 10.2307/2400563 First citation in articleCrossrefGoogle Scholar

  • Gowlet, J. A. J. (1992). Tools – The Paleolithic record. In S. JonesR. MartinD. PilbeamEds., The Cambridge encyclopedia of human evolution (pp. 350–360). New York, NY: Cambridge University Press. First citation in articleGoogle Scholar

  • Gross, C. G. & Bornstein, M. H. (1978). Left and right in science and art. Leonardo, 11, 29–38. doi: 10.2307/1573500 First citation in articleCrossrefGoogle Scholar

  • Gullick, M. M. & Booth, J. R. (2015). The direct segment of the arcuate fasciculus is predictive of longitudinal reading change. Developmental Cognitive Neuroscience, 13, 68–74. doi: 10.1016/j.dcn.2015.05.002 First citation in articleCrossrefGoogle Scholar

  • Hasson, U., Harel, M., Levy, I. & Malach, R. (2003). Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron, 37, 1027–1041. doi: 10.1016/s0896-6273(03)00144-2 First citation in articleCrossrefGoogle Scholar

  • Hildreth, G. (1934). Reversals in reading and writing. Journal of Educational Psychology, 25, 1–20. doi: 10.1037/h0074907 First citation in articleCrossrefGoogle Scholar

  • Houdé, O. (2000). Inhibition and cognitive development: Object, number, categorization, and reasoning. Cognitive Development, 15(1), 63–73. doi: 10.1016/s0885-2014(00)00015-0 First citation in articleCrossrefGoogle Scholar

  • Houdé, O. & Borst, G. (2014). Measuring inhibitory control in children and adults: Brain imaging and mental chronometry. Frontiers in Psychology, 5, 1–7. doi: 10.3389/fpsyg.2014.00616 First citation in articleCrossrefGoogle Scholar

  • Houdé, O. & Guichart, E. (2001). Negative priming effect after inhibition of number/length interference in a Piaget-like task. Developmental Science, 4, 119–123. doi: 10.1111/1467-7687.00156 First citation in articleCrossrefGoogle Scholar

  • Houdé, O., Pineau, A., Leroux, G., Poirel, N., Perchey, G., Lanoë, C., … Mazoyer, B. (2011). Functional magnetic resonance imaging study of Piaget’s conservation-of-number task in preschool and school-age children: A neo-Piagetian approach. Journal of Experimental Child Psychology, 110, 332–346. doi: 10.1016/j.jecp.2011.04.008 First citation in articleCrossrefGoogle Scholar

  • Houdé, O., Rossi, S., Lubin, A. & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13, 876–885. doi: 10.1111/j.1467-7687.2009.00938.x First citation in articleCrossrefGoogle Scholar

  • Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161–1166. doi: 10.1126/science.860134 First citation in articleCrossrefGoogle Scholar

  • Jasinska, A. J. (2013). Automatic inhibition and habitual control: Alternative views in neuroscience research on response inhibition and inhibitory control. Frontiers in Behavioral Neuroscience, 7(April), 1–4. doi: 10.3389/fnbeh.2013.00025 First citation in articleCrossrefGoogle Scholar

  • Jobard, G., Crivello, F. & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: A metanalysis of 35 neuroimaging studies. NeuroImage, 20, 693–712. doi: 10.1016/S1053-8119(03)00343-4 First citation in articleCrossrefGoogle Scholar

  • Kietzmann, T. C., Swisher, J. D., Konig, P. & Tong, F. (2012). Prevalence of selectivity for mirror-symmetric views of faces in the ventral and dorsal visual pathways. The Journal of Neuroscience, 32, 11763–11772. doi: 10.1523/JNEUROSCI.0126-12.2012 First citation in articleCrossrefGoogle Scholar

  • Kolb, B. & Gibb, R. (2014). Searching for the principles of brain plasticity and behavior. Cortex, 58, 1–10. doi: 10.1016/j.cortex.2013.11.012 First citation in articleCrossrefGoogle Scholar

  • Lachmann, T. (2002). Reading disability as a deficit in functional coordination. In E. WitrukA. D. FriedericiT. LachmannEds., Basic functions of language, reading and reading disability (Vol. 20, pp. 165–198). Boston, MA: Springer. doi: 10.1007/978-1-4615-1011-6_11 First citation in articleCrossrefGoogle Scholar

  • Lachmann, T. & Geyer, T. (2003). Letter reversals in dyslexia: Is the case really closed? A critical review and conclusions. Psychology Science, 45, 50–72. doi: 10.1016/s0010-9452(71)80009-6 First citation in articleCrossrefGoogle Scholar

  • Lanoë, C., Vidal, J., Lubin, A., Houdé, O. & Borst, G. (2016). Inhibitory control is needed to overcome written verb inflection errors: Evidence from a developmental negative priming study. Cognitive Development, 37, 18–27. doi: 10.1016/j.cogdev.2015.10.005 First citation in articleCrossrefGoogle Scholar

  • Larsson, J. & Smith, A. T. (2012). fMRI repetition suppression: Neuronal adaptation or stimulus expectation? Cerebral Cortex, 22, 567–576. doi: 10.1093/cercor/bhr119 First citation in articleCrossrefGoogle Scholar

  • Lechuga, M. T., Moreno, V., Pelegrina, S., Gómez-Ariza, C. J. & Bajo, M. T. (2006). Age differences in memory control: Evidence from updating and retrieval-practice tasks. Acta Psychologica, 123, 279–298. doi: 10.1016/j.actpsy.2006.01.006 First citation in articleCrossrefGoogle Scholar

  • Lillard, A. S. & Erisir, A. (2011). Old dogs learning new tricks: Neuroplasticity beyond the juvenile period. Developmental Review: DR, 31, 207–239. doi: 10.1016/j.dr.2011.07.008 First citation in articleCrossrefGoogle Scholar

  • Lubin, A., Vidal, J., Lanoë, C., Houdé, O. & Borst, G. (2013). Inhibitory control is needed for the resolution of arithmetic word problems: A developmental negative priming study. Journal of Educational Psychology, 105, 701–708. doi: 10.1037/a0032625 First citation in articleCrossrefGoogle Scholar

  • Martin, A., Schurz, M., Kronbichler, M. & Richlan, F. (2015). Reading in the brain of children and adults: A meta-analysis of 40 functional magnetic resonance imaging studies. Human Brain Mapping, 36, 1963–1981. doi: 10.1002/hbm.22749 First citation in articleCrossrefGoogle Scholar

  • McClelland, J. L. & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375–407. doi: 10.1037/0033-295X.88.5.375 First citation in articleCrossrefGoogle Scholar

  • Nissen, H. J. (1986). The archaic texts from Uruk. World Archaeology, 17, 317–334. doi: 10.1080/00438243.1986.9979973 First citation in articleCrossrefGoogle Scholar

  • Orton, S. T. (1925). “Word-blindness” in school children. Archives of Neurology and Psychiatry, 14, 581–615. doi: 10.1001/archneurpsyc.1925.02200170002001 First citation in articleCrossrefGoogle Scholar

  • Pegado, F., Comerlato, E., Ventura, F., Jobert, A., Nakamura, K., Buiatti, M., … Dehaene, S. (2014). Timing the impact of literacy on visual processing. Proceedings of the National Academy of Sciences of the United States of America, 111(49), E5233–E5242. doi: 10.1073/pnas.1417347111 First citation in articleCrossrefGoogle Scholar

  • Pegado, F., Nakamura, K., Cohen, L. & Dehaene, S. (2011). Breaking the symmetry: Mirror discrimination for single letters but not for pictures in the Visual Word Form Area. NeuroImage, 55, 742–749. doi: 10.1016/j.neuroimage.2010.11.043 First citation in articleCrossrefGoogle Scholar

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331, 585–589. doi: 10.1038/331585a0 First citation in articleCrossrefGoogle Scholar

  • Piaget, J. (1952). The child’s conception of number. London, UK: Routledge & Kegan Paul. First citation in articleGoogle Scholar

  • Piaget, J. (1983). Piaget’s theory. Handbook of child psychology (pp. 103–128). New York, NY: Wiley. First citation in articleGoogle Scholar

  • Poirel, N., Borst, G., Simon, G., Rossi, S., Cassotti, M., Pineau, A. & Houdé, O. (2012). Number conservation is related to children’s prefrontal inhibitory control: An fMRI study of a piagetian task. PLoS One, 7, e40802. doi: 10.1371/journal.pone.0040802 First citation in articleCrossrefGoogle Scholar

  • Posner, M. I. & Carr, T. H. (1992). Lexical access and the brain: Anatomical constraints on cognitive models of word recognition. The American Journal of Psychology, 105, 1–26. doi: 10.2307/1422979 First citation in articleCrossrefGoogle Scholar

  • Price, C. J. & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15, 246–253. doi: 10.1016/j.tics.2011.04.001 First citation in articleCrossrefGoogle Scholar

  • Rollenhagen, J. & Olson, C. (2000). Mirror-image confusion in single neurons of the macaque inferotemporal cortex. Science, 287, 1506–1508. doi: 10.1126/science.287.5457.1506 First citation in articleCrossrefGoogle Scholar

  • Salmelin, R. & Kujala, J. (2006). Neural representation of language: Activation versus long-range connectivity. Trends in Cognitive Sciences, 10, 519–525. doi: 10.1016/j.tics.2006.09.007 First citation in articleCrossrefGoogle Scholar

  • Serpell, R. (1971). Discrimination of orientation by Zambian children. Journal of Comparative and Physiological Psychology, 75, 312–316. doi: 10.1037/h0030832 First citation in articleCrossrefGoogle Scholar

  • Sutherland, N. S. (1960). Visual discrimination of orientation by octopus: Mirror images. British Journal of Psychology, 51, 9–18. doi: 10.1016/0003-3472(65)90109-0 First citation in articleCrossrefGoogle Scholar

  • Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. The Quarterly Journal of Experimental Psychology, 37, 571–590. doi: 10.1080/14640748508400920 First citation in articleCrossrefGoogle Scholar

  • Todrin, D. C. & Blough, D. S. (1983). The discrimination of mirror-image forms by pigeons. Perception & Psychophysics, 34, 397–402. doi: 10.3758/BF03203053 First citation in articleCrossrefGoogle Scholar

  • White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., Nicol, T., Bradlow, A. R., … Kraus, N. (2015). Auditory processing in noise: A preschool biomarker for literacy. PLoS Biology, 13, 1–17. doi: 10.1371/journal.pbio.1002196 First citation in articleCrossrefGoogle Scholar

  • Yamada, Y., Stevens, C., Dow, M., Harn, B., Chard, D. J. & Neville, H. J. (2012). Emergence of the neural network for reading in five-year old beginning readers of different levels of pre-literacy abilities: An fMRI study. NeuroImage, 57, 704–713. doi: 10.1016/j.neuroimage.2010.10.057.Emergence First citation in articleCrossrefGoogle Scholar

  • Yovel, G. & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44, 889–898. doi: 10.3923/itj.2008.105.111 First citation in articleCrossrefGoogle Scholar