Skip to main content

The effect of omega-3 and vitamin E on oxidative stress and inflammation: Systematic review and meta-analysis of randomized controlled trials

Published Online: Doi: https://doi.org/10.1024/0300-9831/a000599

Abstract.Background: Several studies have investigated the effect of omega-3 fatty acids and vitamin E on oxidative stress and inflammation, but their findings are inconsistent. The aim of this meta-analysis is to elucidate the overall effects of co-supplementation with omega-3 fatty acids and vitamin E on oxidative stress and inflammation. Methods: We searched titles, abstracts, and keywords of relevant articles indexed in PubMed, ISI, Scopus, and Google Scholar databases up to December 2018 to identify eligible RCT studies. Random effects model was used to estimate the pooled effect of co-supplementation with omega-3 fatty acids and vitamin E on oxidative stress and inflammation. Results: Overall, 7 RCTs with 504 participants were included in this meta-analysis. We found that co-supplementation with omega-3 fatty acids and vitamin E decreased hs-CRP (weighed mean difference (WMD) = −2.15 mg/L; 95% CI: −3.40, −0.91 mg/L; P < 0.001) concentrations and increased total antioxidant capacity (TAC) (WMD = 92.87 mmol/L; 95% CI: 31.97, 153.77 mmol/L; P = 0.03), and nitric oxide levels (NO) (WMD: 6.95 μmol/L; 95% CI: 3.86, 10.04, P < 0.001) compared with control group. Omega-3 fatty acids and vitamin E had no significant effect on malondialdehyde (MDA) (WMD: 1.54 mmol/L; 95% CI: −1.29, 4.36; P = 0.196), and glutathione (GSH) (WMD: 20.87 mmol/L; 95% CI: −20.04, 61.6, P = 0.31) levels. Conclusion: The present meta-analysis found that omega-3 fatty acids and vitamin E co-supplementation significantly decreased hs-CRP and increased NO and TAC, although it had no significant effect on MDA and GSH.

References

  • 1 Sies, H. (2000) What is oxidative stress? Oxidative stress and vascular disease, pp. 1–8. Springer. First citation in articleGoogle Scholar

  • 2 Yoshikawa, T., & Naito, Y. (2000) What is oxidative stress? JMAJ. 45 (7): 271–6. First citation in articleGoogle Scholar

  • 3 Ďuračková, Z. (2010) Some current insights into oxidative stress. Physiol Res. 59 (4). First citation in articleMedlineGoogle Scholar

  • 4 Reuter, S., Gupta, S.C., Chaturvedi, M.M., & Aggarwal, B.B. (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 49 (11): 1603–16. First citation in articleCrossref MedlineGoogle Scholar

  • 5 Halliwell, B. (1995) Oxygen radicals, nitric oxide and human inflammatory joint disease. Ann Rheum Dis. 54 (6): 505. First citation in articleCrossref MedlineGoogle Scholar

  • 6 Hoeschen, R.J. (1997) Oxidative stress and cardiovascular disease. Can J Cardiol. 13 (11): 1021–5. First citation in articleMedlineGoogle Scholar

  • 7 Wang, X., Wang, W., Li, L., Perry, G., Lee, H-g, & Zhu, X. (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta Journal. 1842 (8): 1240–7. First citation in articleCrossref MedlineGoogle Scholar

  • 8 Aboualizadeh, E., Ranji, M., Sorenson, C.M., Sepehr, R., Sheibani, N., & Hirschmugl, C.J., et al. (2017) Data associated with “Retinal oxidative stress at the onset of diabetes determined by synchrotron FTIR widefield imaging: towards diabetes pathogenesis” and “Temporal diabetes-induced biochemical changes in distinctive layers of mouse retina”. Analyst. First citation in articleCrossref MedlineGoogle Scholar

  • 9 Varadharaj, S., Kelly, O.J., Khayat, R.N., Kumar, P.S., Ahmed, N., & Zweier, J.L. (2017) Role of dietary antioxidants in the preservation of vascular function and the modulation of health and disease. Front Cardiovasc Med. 4, 64. First citation in articleCrossref MedlineGoogle Scholar

  • 10 Dennis, J., & Witting, P. (2017) Protective role for antioxidants in acute kidney disease. Nutrients. 9 (7): 718. First citation in articleCrossrefGoogle Scholar

  • 11 Gorin, M., Chew, E., & Clemons, E. (2017) Long-Term Effects of Vitamins C, E, Beta-Carotene and Zinc on Age-Related Macular Degeneration. AREDS Report No. 35. First citation in articleGoogle Scholar

  • 12 Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M.C., & Rahu, N. (2016) Oxidative stress and inflammation: what polyphenols can do for us? Oxidative Med. Cell. Longev. First citation in articleCrossref MedlineGoogle Scholar

  • 13 Singh, U., Devaraj, S., & Jialal, I. (2005) Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr. 25, 151–74. First citation in articleCrossref MedlineGoogle Scholar

  • 14 Calder, P.C. (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 1851 (4): 469–84. First citation in articleCrossref MedlineGoogle Scholar

  • 15 Jamilian, M., Shojaei, A., Samimi, M., Ebrahimi, F.A., Aghadavod, E., & Karamali, M., et al. (2018) The effects of omega-3 and vitamin E co-supplementation on parameters of mental health and gene expression related to insulin and inflammation in subjects with polycystic ovary syndrome. J Affect Disord. 229, 41–7. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Saboori, S., Koohdani, F., Nematipour, E., Yousefi Rad, E., Saboor-Yaraghi, A.A., & Javanbakht, M.H., et al. (2016) Beneficial effects of omega-3 and vitamin E coadministration on gene expression of SIRT1 and PGC1alpha and serum antioxidant enzymes in patients with coronary artery disease. Nutrition, metabolism, and cardiovascular diseases. Nutr. Metab. Cardiovasc Dis. 26 (6): 489–94. First citation in articleCrossref MedlineGoogle Scholar

  • 17 Rahmani, E., Samimi, M., Ebrahimi, F.A., Foroozanfard, F., Ahmadi, S., & Rahimi, M., et al. (2017) The effects of omega-3 fatty acids and vitamin E co-supplementation on gene expression of lipoprotein (a) and oxidized low-density lipoprotein, lipid profiles and biomarkers of oxidative stress in patients with polycystic ovary syndrome. Mol Cell Endocrinol. 439, 247–55. First citation in articleCrossref MedlineGoogle Scholar

  • 18 Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., & Petticrew, M., et al. (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 4 (1): 1. First citation in articleCrossref MedlineGoogle Scholar

  • 19 Jadad, A.R., Moore, R.A., Carroll, D., Jenkinson, C., Reynolds, D.J.M., & Gavaghan, D.J., et al. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 17 (1): 1–12. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Higgins, J.P., Thompson, S.G., Deeks, J.J., & Altman, D.G. (2003) Measuring inconsistency in meta-analyses. BMJ. 327 (7414): 557. First citation in articleCrossref MedlineGoogle Scholar

  • 21 Asemi, Z., Soleimani, A., Shakeri, H., Mazroii, N., & Esmaillzadeh, A. (2016) Effects of omega-3 fatty acid plus alpha-tocopherol supplementation on malnutrition-inflammation score, biomarkers of inflammation and oxidative stress in chronic hemodialysis patients. Int Urol Nephrol. 48 (11): 1887–95. First citation in articleCrossref MedlineGoogle Scholar

  • 22 Talari, H.R., Poladchang, S., Hamidian, Y., Samimi, M., Gilasi, H.R., & Ebrahimi, F.A., et al. (2018) The Effects of Omega-3 and Vitamin E Co-supplementation on Carotid Intima-media Thickness and Inflammatory Factors in Patients with Polycystic Ovary Syndrome. Oman Medical Journal. 33 (6): 473–9. First citation in articleCrossref MedlineGoogle Scholar

  • 23 Mirhashemi, S.M., Sahmani, M., Salehi, B., Reza, J.Z., Taghizadeh, M., & Moussavi, N., et al. (2017) Metabolic response to omega-3 fatty acids and vitamin e co-supplementation in patients with fibrocystic breast disease: A randomized, double-blind, placebo-controlled trial. Arch Iran Med. 20 (8): 466. First citation in articleMedlineGoogle Scholar

  • 24 Taghizadeh, M., Tamtaji, O.R., Dadgostar, E., Daneshvar Kakhaki, R., Bahmani, F., & Abolhassani, J., et al. (2017) The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Neurochem Int. 108, 183–9. First citation in articleCrossref MedlineGoogle Scholar

  • 25 Jamilian, M., Hashemi Dizaji, S., Bahmani, F., Taghizadeh, M., Memarzadeh, M.R., & Karamali, M., et al. (2017) A Randomized Controlled Clinical Trial Investigating the Effects of Omega-3 Fatty Acids and Vitamin E Co-Supplementation on Biomarkers of Oxidative Stress, Inflammation and Pregnancy Outcomes in Gestational Diabetes. Can J Diabetes. 41 (2): 143–9. First citation in articleCrossref MedlineGoogle Scholar

  • 26 Ingle, P.V., & Patel, D.M. (2011) C-reactive protein in various disease condition–an overview. Asian J Pharm Clin Res. 4 (1): 9–13. First citation in articleGoogle Scholar

  • 27 Danesh, J., Collins, R., Appleby, P., & Peto, R. (1998) Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. Jama. 279 (18): 1477–82. First citation in articleCrossref MedlineGoogle Scholar

  • 28 Shah, T., Casas, J.P., Cooper, J.A., Tzoulaki, I., Sofat, R., & McCormack, V., et al. (2008) Critical appraisal of CRP measurement for the prediction of coronary heart disease events: new data and systematic review of 31 prospective cohorts. Int J Epidemiol. 38 (1): 217–31. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Labonté, M.-È., Dewailly, E., Lucas, M., Couture, P., & Lamarche, B. (2014) Association of red blood cell n-3 polyunsaturated fatty acids with plasma inflammatory biomarkers among the Quebec Cree population. Eur J Clin Nutr. 68 (9): 1042. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Schwab, S., Zierer, A., Schneider, A., Heier, M., Koenig, W., & Kastenmuller, G., et al. (2015) Vitamin E supplementation is associated with lower levels of C-reactive protein only in higher dosages and combined with other antioxidants: The Cooperative Health Research in the Region of Augsburg (KORA) F4 study. Br J Nutr. 113 (11): 1782–91. First citation in articleCrossref MedlineGoogle Scholar

  • 31 Uchida, K. (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med. 28 (12): 1685–96. First citation in articleCrossref MedlineGoogle Scholar

  • 32 Khatami, P.G., Soleimani, A., Sharifi, N., Aghadavod, E., & Asemi, Z. (2016) The effects of high-dose vitamin E supplementation on biomarkers of kidney injury, inflammation, and oxidative stress in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. J Clin Lipidol. 10 (4): 922–9. First citation in articleCrossref MedlineGoogle Scholar

  • 33 Ateya, A.M., Sabri, N.A., El Hakim, I., & Shaheen, S.M. (2017) Effect of Omega-3 Fatty Acids on Serum Lipid Profile and Oxidative Stress in Pediatric Patients on Regular Hemodialysis: A Randomized Placebo-Controlled Study. J Ren Nutr. 27 (3): 169–74. First citation in articleCrossref MedlineGoogle Scholar

  • 34 Martín-Gallán, P., Carrascosa, A., Gussinyé, M., & Domínguez, C. (2007) Changes in oxidant-antioxidant status in young diabetic patients from clinical onset onwards. J Cell Mol Med. 11 (6): 1352–66. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Anderson, M.E. (1998) Glutathione. an overview of biosynthesis and modulation. Chem- Biol Interact. 111, 1–14. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Shahidi, F., & Zhong, Y. (2015) Measurement of antioxidant activity. J Funct Foods. 18, 757–81. First citation in articleCrossrefGoogle Scholar

  • 37 Youdim, M.B., & Riederer, P. (1997) Understanding Parkinson’s disease. Sci Am. 276 (1): 52–9. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Buhl, R., Holroyd, K., Mastrangeli, A., Cantin, A., Jaffe, H.A., & Wells, F., et al. (1989) Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet. 334 (8675): 1294–8. First citation in articleCrossrefGoogle Scholar

  • 39 Fernández-Checa, J.C., Colell, A., & Garcı́a-Ruiz, C. (2002) S-Adenosyl-L-methionine and mitochondrial reduced glutathione depletion in alcoholic liver disease. Alcohol. 27 (3): 179–83. First citation in articleCrossref MedlineGoogle Scholar

  • 40 Hudson, V.M. (2001) Rethinking cystic fibrosis pathology: the critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radic Biol Med. 30 (12): 1440–61. First citation in articleCrossref MedlineGoogle Scholar

  • 41 Mallis, R.J., Hamann, M.J., Zhao, W., Zhang, T., Hendrich, S., & Thomas, J.A. (2002) Irreversible thiol oxidation in carbonic anhydrase III: protection by S-glutathiolation and detection in aging rats. Biol Chem. 383 (3–4): 649–62. First citation in articleCrossref MedlineGoogle Scholar

  • 42 Serafini, M., & Del Rio, D. (2004) Understanding the association between dietary antioxidants, redox status and disease: is the total antioxidant capacity the right tool? Redox Report. 9 (3): 145–52. First citation in articleCrossref MedlineGoogle Scholar

  • 43 Koutroubakis, I.E., Malliaraki, N., & Dimoulios, P.D. (2004) Decreased total and corrected antioxidant capacity in patients with inflammatory bowel disease. Dig Dis Sci. 49 (9): 1433–7. First citation in articleCrossref MedlineGoogle Scholar

  • 44 Wu, G., & Morris, S.M. Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J. 336 (Pt 1): 1–17. First citation in articleCrossref MedlineGoogle Scholar

  • 45 Chen, K., Pittman, R.N., & Popel, A.S. (2008) Nitric oxide in the vasculature: where does it come from and where does it go? A quantitative perspective. Antioxid Redox Signal. 10 (7): 1185–98. First citation in articleCrossref MedlineGoogle Scholar

  • 46 Zebrowska, A., Mizia-Stec, K., Mizia, M., Gasior, Z., & Poprzecki, S. (2015) Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur J Sport Sci. 15 (4): 305–14. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Luiking, Y.C., Engelen, M.P., & Deutz, N.E. (2010) Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care. 13 (1): 97. First citation in articleCrossref MedlineGoogle Scholar

  • 48 Wu, G., & Meininger, C.J. (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr. 22 (1): 61–86. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Xue, B., Yang, Z., Wang, X., & Shi, H. (2012) Omega-3 polyunsaturated fatty acids antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. PloS One. 7 (10): e45990. First citation in articleCrossref MedlineGoogle Scholar

  • 50 Pischon, T., Hankinson, S.E., GkS, Hotamisligil, Rifai, N., Willett, W.C., & Rimm, E.B. (2003) Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation. 108 (2): 155–60. First citation in articleCrossref MedlineGoogle Scholar

  • 51 Yang, Z., Kahn, B.B., Shi, H., & Xue, B-z. (2010) Macrophage α1-AMP-activated protein kinase (α1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem. 285, 19051–19059. First citation in articleCrossref MedlineGoogle Scholar

  • 52 Mattagajasingh, I., Kim, C.-S., Naqvi, A., Yamamori, T., Hoffman, T.A., & Jung, S.-B., et al. (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 104 (37): 14855–60. First citation in articleCrossref MedlineGoogle Scholar

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.