Skip to main content

Complex Problem Solving and Worked Examples

The Role of Prompting Strategic Behavior and Fading-in Solution Steps

Published Online: Doi: https://doi.org/10.1024/1010-0652.23.2.129

How can worked examples be enhanced to promote complex problem solving? N = 92 students of the 8th grade attended in pairs to a physics problem. Problem solving was supported by (a) a worked example given as a whole, (b) a worked example presented incrementally (i.e. only one solution step at a time), or (c) a worked example presented incrementally and accompanied by strategic prompts. In groups (b) and (c) students self-regulated when to attend to the next solution step. In group (c) each solution step was preceded by a prompt that suggested strategic learning behavior (e.g. note taking, sketching, communicating with the learning partner, etc.). Prompts and solution steps were given on separate sheets. The study revealed that incremental presentation lead to a better learning experience (higher feeling of competence, lower cognitive load) compared to a conventional presentation of the worked example. However, only if additional strategic learning behavior was prompted, students remembered the solution more correctly and reproduced more solution steps.


Komplexes Problemlösen und ausgearbeitete Lösungsbeispiele: Die Bedeutung von der Anregung strategischen Verhaltens und des Einblendens von Lösungsschritten

Wie können Lösungsbeispiele angereichert werden, um komplexes Problemlösen zu unterstützen? N = 92 Schülerinnen und Schüler der 8. Jahrgangsstufe bearbeiteten paarweise ein Problem aus der Physik. Problemlösen wurde unterstützt durch eine von drei Varianten eines Lösungsbeispiels: (a) durch ein zusammenhängendes Lösungsbeispiel, (b) durch ein schrittweise dargebotenes Lösungsbeispiel oder (c) durch ein schrittweise dargebotenes Lösungsbeispiel mit strategischen Prompts. In den Bedingungen (b) und (c) steuerten die Lernenden selbst, wann sie sich dem nächsten Lösungsschritt widmeten. In Bedingung (c) war jedem Lösungsschritt ein Prompt vorangestellt, der strategisches Lernverhalten anregen sollte (z.B. Notizen machen, eine Skizze anfertigen, mit dem Lernpartner kommunizieren etc.). Prompts und Lösungsschritte wurden auf separaten “Kärtchen” dargeboten. Die inkrementellen Darbietungen des Lösungsbeispiels führten im Vergleich zur zusammenhängenden Präsentation zu einem positiveren Lernerleben (höhere Kompetenzwahrnehmung, niedrigere kognitive Belastung). Aber nur wenn zusätzlich zur inkrementellen Darbietung auch durch Prompts zu strategischem Lernverhalten angeregt wurde, erinnerten sich mehr Schülerinnen und Schüler an die korrekte Problemlösung und reproduzierten mehr Lösungsschritte.

References

  • Anderson, J.R. , Fincham, J.M. , Douglass, S. (1997). The role of examples and rules in the acquisition of a cognitive skill. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 932–945. First citation in articleGoogle Scholar

  • Atkinson, R.K. , Derry, S.J. , Renkl, A. , Wortham, D.W. (2000). Learning from examples: Instructional principles from the worked examples research. Review of Educational Research, 70, 181–214. First citation in articleCrossrefGoogle Scholar

  • Atkinson, R.K. , Renkl, A. , Merrill, M.M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95, 774–783. First citation in articleCrossrefGoogle Scholar

  • Baumert, J. , Lehmann, R. , Neubrand, J. , Patjens, S. , Jungclaus, H. , Günther, W. (Eds.). (1998). TIMSS/II – Testaufgaben Naturwissenschaften (7./8. Klasse) [TIMSS/II – Test items sciences (grade 7/8)]. Materialien aus der Bildungsforschung, 61(111 p.). Available On-line: www.mpib-berlin.mpg.de/ TIMSSII-Germany/Die_Testaufgaben/TIMSSII-Nat.pdf. [13.01.2009]. First citation in articleGoogle Scholar

  • Bruner, J.S. (1961). The art of discovery. Harvard Educational Review, 31, 21–32. First citation in articleGoogle Scholar

  • Catrambone, R. (1995). Aiding subgoal learning: Effects on transfer. Journal of Educational Psychology, 87, 5–17. First citation in articleCrossrefGoogle Scholar

  • Catrambone, R. (1996). Generalizing solution procedures learned from examples. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1020–1031. First citation in articleCrossrefGoogle Scholar

  • Chi, M.T. , Bassok, M. , Lewis, M.W. , Reimann, P. , Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182. First citation in articleCrossrefGoogle Scholar

  • Chi, M.T. , de Leeuw, N. , Chiu, M.H. , LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–447. First citation in articleGoogle Scholar

  • Cohen, R. (1993). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64, 1–35. First citation in articleCrossrefGoogle Scholar

  • de Jong, T. (2005). The guided discovery principle in multimedia learning. In R.E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 215–228). New York: Cambridge University Press. First citation in articleCrossrefGoogle Scholar

  • Deci, E.L. , Ryan, R.M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11, 227–268. First citation in articleCrossrefGoogle Scholar

  • Gerjets, P. , Scheiter, K. , Catrambone, R. (2006). Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations? Learning and Instruction, 16, 104–121. First citation in articleCrossrefGoogle Scholar

  • Hänze, M. , Berger, R. (2007). Cooperative learning, motivational effects and student characteristics: An experimental study comparing cooperative learning and direct instruction in 12th grade physics classes. Learning and Instruction, 17, 29–41. First citation in articleCrossrefGoogle Scholar

  • Heller, K. , Perleth, C. (2000). Kognitiver Fähigkeitstest KFT 4–12 + R (für 4. bis 12. Klassen, Revision) [Cognitive ability test for grades 4–12]. Göttingen: Beltz-Test GmbH. First citation in articleGoogle Scholar

  • Hendy, K. , Hamilton, K. , Landry, L. (1993). Measuring subjective workload: When is one scale better than many? Human Factors, 35, 579–601. First citation in articleGoogle Scholar

  • Jonassen, D. (1991). Objectivism vs. constructivism. Educational Technology Research and Development, 39, 5–14. First citation in articleCrossrefGoogle Scholar

  • Kirschner, P. , Sweller, J. , Clark, R.E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86. First citation in articleCrossrefGoogle Scholar

  • Mandl, H. , Friedrich, H.F. (Eds.). (2006). Handbuch Lernstrategien [Learning strategies handbook]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Mayer, R.E. (2004). Should there be a three-strikes rule against pure discovery learning? The case of guided methods of instruction. American Psychologist, 59, 14–19. First citation in articleCrossrefGoogle Scholar

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434. First citation in articleCrossrefGoogle Scholar

  • Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21, 1–29. First citation in articleCrossrefGoogle Scholar

  • Renkl, A. (2002). Worked-out examples: Instructional explanations support learning by self-explanations. Learning and Instruction, 12, 529–556. First citation in articleCrossrefGoogle Scholar

  • Renkl, A. , Atkinson, R. , Maier, U. , Staley, R. (2002). From example study to problem solving: Smooth transitions help learning. Journal of Experimental Education, 70, 293–315. First citation in articleCrossrefGoogle Scholar

  • Rozenblit, L. , Keil, F. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 26, 521–562. First citation in articleCrossrefGoogle Scholar

  • Salomon, G. (1983). The differential investment of mental effort in learning from different sources. Educational Psychologist, 18, 42–50. First citation in articleCrossrefGoogle Scholar

  • Schmidt-Weigand, F. , Franke-Braun, G. , Hänze, M. (2008). Erhöhen gestufte Lernhilfen die Effektivität von Lösungsbeispielen? Eine Studie zur kooperativen Bearbeitung von Aufgaben in den Naturwissenschaften [The influence of different presentation modes of worked examples on learning]. Unterrichtswissenschaft, 36, 365–384. First citation in articleGoogle Scholar

  • Seufert, T. , Zander, S. , Brünken, R. (2007). Das Generieren von Bildern als Verstehenshilfen beim Lernen aus Texten [Generating pictures as aid for comprehension in learning from texts]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 39, 33–42. First citation in articleLinkGoogle Scholar

  • Stark, R. , Gruber, H. , Renkl, A. , Mandl, H. (2000). Instruktionale Effekte einer kombinierten Lernmethode. Zahlt sich die Kombination von Lösungsbeispielen und Problemlöseaufgaben aus [Does the combination of worked-out examples and problem-solving tasks pay off]?. Zeitschrift für Pädagogische Psychologie, 14, 206–218. First citation in articleLinkGoogle Scholar

  • Stark, R. , Tyroller, M. , Krause, U.-M. , Mandl, H. (2000). Effekte einer metakognitiven Promptingmaßnahme beim situierten, beispielbasierten Lernen im Bereich Korrelationsrechnung [Effects of a prompting intervention in situated, example-based learning in the domain of correlation]. Zeitschrift für Pädagogische Psychologie, 22, 59–71. First citation in articleLinkGoogle Scholar

  • Sweller, J. , Cooper, G.A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2, 59–89. First citation in articleCrossrefGoogle Scholar

  • Sweller, J. , van Merriënboer, J.J.G. , Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–196. First citation in articleCrossrefGoogle Scholar

  • van Merriënboer, J.J.G. , Krammer, H.P.M. (1987). Instructional strategies and tactics for the design of introductory computer programming courses in high school. Instructional Science, 16, 251–285. First citation in articleCrossrefGoogle Scholar

  • van Merriënboer, J.J.G. , Kirschner, P. , Kester, L. (2003). Taking the load off a learner’s mind: Instructional design for complex learning. Educational Psychologist, 38, 5–13. First citation in articleCrossrefGoogle Scholar

  • Zhu, X. , Simon, H.A. (1987). Learning mathematics from examples and by doing. Cognition and Instruction, 4, 137–166. First citation in articleCrossrefGoogle Scholar

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.