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Abstract: Decades of research in causal and contingency learning show that people’s estimations of the degree of contingency between two
events are easily biased by the relative probabilities of those two events. If two events co-occur frequently, then people tend to overestimate
the strength of the contingency between them. Traditionally, these biases have been explained in terms of relatively simple single-process
models of learning and reasoning. However, more recently some authors have found that these biases do not appear in all dependent variables
and have proposed dual-process models to explain these dissociations between variables. In the present paper we review the evidence for
dissociations supporting dual-process models and we point out important shortcomings of this literature. Some dissociations seem to be
difficult to replicate or poorly generalizable and others can be attributed to methodological artifacts. Overall, we conclude that support for
dual-process models of biased contingency detection is scarce and inconclusive.
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Contingency learning is the ability to detect that different
events in the environment are statistically related. Classical
and instrumental conditioning are probably the simplest
and more popular examples of contingency learning. How-
ever, this ability is also an essential part of more sophisti-
cated cognitive processes like language acquisition (Ellis,
2008), visual search (Chun & Turk-Browne, 2008), causal
induction (Holyoak & Cheng, 2011), or categorization
(Kruschke, 2008). Given the importance of these processes,
it is hardly surprising that people tend to be very good at
detecting statistical correlations and causal relations since
their first years of life (Beckers, Vandorpe, Debeys, &
De Houwer, 2009; Gopnik, Sobel, Schulz, & Glymour,
2001; Saffran, Aslin, & Newport, 1996).

Unfortunately, we are so eager to detect statistical pat-
terns that we also tend to perceive them when they are
absent (Chapman & Chapman 1969; Matute, 1996;
Redelmeier & Tversky, 1996). Understanding how and
why we misperceive contingency between unrelated events
has become one of the most interesting topics of research in
cognitive psychology (Gilovich, 1991; Vyse, 1997). It has
been suggested that biased contingency detection might
play a role in the development of pseudoscientific thinking,
clinical errors, social stereotyping, and pathological behav-
ior, among others (Hamilton & Gifford, 1976; Lilienfeld,
Ritschel, Lynn, Cautin, & Latzman, 2014; Matute, Yarritu,
& Vadillo, 2011; Orgaz, Estevez, & Matute, 2013;

Reuven-Magril, Dar, & Liberman, 2008). From this point
of view, basic research on the mechanisms underlying these
biases can make a potential contribution to the improve-
ment of debiasing and educational strategies aimed at
counteracting them (Barbería, Blanco, Cubillas, & Matute,
2013; Matute et al., 2015).

In the present review, we focus on two specific biases
that are assumed to distort our perception of contingency,
namely, the cue-density bias and the outcome-density bias
(Allan & Jenkins, 1983; López, Cobos, Caño, & Shanks,
1998; Wasserman, Kao, Van-Hamme, Katagiri, & Young,
1996). In the following sections we briefly explain these
two biases and their contribution to our understanding of
why we perceive illusory correlations and why we infer cau-
sal relations between events that are actually independent.
Although biases in contingency detection have been
explored extensively for decades, there is still little consen-
sus about their underlying mechanisms. Traditionally, they
have been explained in terms of relatively simple single-
process models that put the stress on basic learning and
memory processes (Fiedler, 2000; López et al., 1998;
Shanks, 1995). However, more recent theories have sug-
gested that multiple processes are needed to fully under-
stand biases in contingency detection (Allan, Siegel, &
Hannah, 2007; Allan, Siegel, & Tangen, 2005; Perales,
Catena, Shanks, & González, 2005; Ratliff & Nosek,
2010). In general, these theories fit very well with the
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increasing popularity of dual-process models in cognitive
psychology (Sherman, Gawronski, & Trope, 2014).

The goal of the present paper is to assess critically the
evidence for dual-process models of biased contingency
learning. To summarize our review, we first present the
basic methodology used to explore biases in contingency
detection and the main (single- and dual-process) theories
designed to explain them. Then, we present the results of
a reanalysis of our own published work that suggests that
the findings that support dual-process models were not rep-
licated in our own data set, comprising data from 848 par-
ticipants. In addition, computer simulations show that the
use of insensitive dependent measures might explain some
results that are typically interpreted in terms of dual-
process models. Finally, we explore the experiments that
have tested the predictions of dual-process models with
implicit measures and we argue that the pattern of results
is too heterogeneous to draw any firm conclusions. In light
of this, we conclude that for the moment it would be
premature to abandon traditional, single-process models.
Unless future research shows otherwise, these models still
provide the best and simplest framework to understand
biases in contingency detection and to design successful
debiasing strategies.

Biased Contingency Detection and
Illusory Correlations

Imagine that you were asked to evaluate whether a new
medicine produces an allergic reaction as a side effect. To
accomplish this task, you are shown the individual medical
records of a number of patients where you can find out
whether each patient took the medicine and whether he/
she suffered an allergic reaction. How should you assess
the relation between taking the medicine and suffering
the allergy? As shown in Figure 1A, to make this judgment
you would need four pieces of information that can be sum-
marized in a 2 � 2 contingency table. You would need to
know how many patients took the medicine and suffered
an allergy (cell a), how many patients took the medicine
and did not suffer an allergy (cell b), how many patients
did not take the medicine but suffered an allergy neverthe-
less (cell c), and, finally, how many patients did not take the
medicine and did not suffer an allergy (cell d).

Based on this information, you could compute some
measure of contingency and estimate whether or not that
level of contingency is substantially different from zero.
Although there are alternative ways to measure

Figure 1. Panel 1A represents a stan-
dard 2 � 2 contingency table. Panels
1B–1G represent examples of contin-
gency tables yielding different Δp
values.
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contingency, the Δp rule is usually considered a valid nor-
mative index (Allan, 1980; Cheng & Novick, 1992; Jenkins
& Ward, 1965). According to this rule, if you want to assess
the degree of contingency between a cue (e.g., taking a
medicine) and an outcome (e.g., an allergy), then you need
to compute

Δp ¼ pðojcÞ � pðoj � cÞ; ð1Þ
where p(o|c) is the probability of the outcome given the
cue and p(o|�c) is the probability of the outcome in
the absence of the cue. As shown in Figure 1A, these
two probabilities can be easily computed from the infor-
mation contained in a contingency table. Positive values
of Δp indicate that the probability of the outcome is
higher when the cue is present than when it is absent
(see, e.g., Figure 1B). In contrast, negative values indicate
that the probability of the outcome is reduced when the
cue is present (e.g., Figure 1C). Finally, if the probability of
the outcome is the same in the presence as in the absence
of the cue, the value of Δp is always 0 (e.g., Figure 1D). In
these latter cases, there is no contingency between cue
and outcome.

When laypeople are asked to estimate the contingency
between two events, do their judgments agree with this nor-
mative rule? As we will see, the answer is both “yes” and
“no.” To study how people detect contingency, researchers
typically rely on a very simple task that has become a stan-
dard procedure in contingency-learning research. During
the task, participants are exposed to a series of trials in
which a cue and an outcome may be either present or
absent, and they are instructed to discover the relationship
between both. As in our previous example, the cue can be a
fictitious medicine taken by some patients and the outcome
can be an allergic reaction. On each trial, participants are
first shown information about whether a patient took the
drug on a specific day and they are asked to predict
whether or not they think that this patient will develop an
allergic reaction. After entering a yes/no response, they
receive feedback and they proceed to the next trial. Once
they have seen the whole sequence of trials in random
order, the participants are asked to rate their perceived
strength of the relationship between the medicine and the
allergic reaction.

The usual result is that participants’ judgments tend to
covary with the objective drug-allergy contingency as
measured by Δp (e.g., López et al., 1998; Shanks &
Dickinson, 1987; Wasserman, 1990). Therefore, to some
extent participants seem to be able to track the actual
cue-outcome contingency. However, departures from the
objective contingency are also observed. For instance,
participants’ judgments tend to be biased by the marginal
probability of the outcome, defined as the proportion of
trials in which the outcome is present, that is,

p(outcome) = (a + c)/(a + b + c + d). Figure 1E depicts an
example where there is no contingency between cue and
outcome, but the outcome tends to appear very frequently.
In situations like this, participants tend to overestimate
contingency (Allan & Jenkins, 1983; Allan et al., 2005;
Buehner, Cheng, & Clifford, 2003; López et al., 1998;
Musca, Vadillo, Blanco, & Matute, 2010; Wasserman
et al., 1996). Similarly, other things being equal, partici-
pants’ judgments tend to covary with the marginal probabil-
ity of the cue, defined as the proportion of trials in which
the cue is present; that is, p(cue) = (a + b)/(a + b + c + d).
Figure 1F represents an example where the probability of
the cue is high, but there is no contingency between cue
and outcome. Again, participants tend to overestimate con-
tingency in situations like this (Allan & Jenkins, 1983;
Matute et al., 2011; Perales et al., 2005; Vadillo, Musca,
Blanco, & Matute, 2011; Wasserman et al., 1996). The
biasing effects of the probability of the outcome and the
probability of the cue are typically known as outcome- and
cue-density biases. As the astute reader might guess, the
most problematic situation is that in which both the proba-
bility of the outcome and the probability of the cue are large
(Figure 1G). Participants seem to find particularly difficult
to detect the lack of contingency in these cases (Blanco,
Matute, & Vadillo, 2013).

It is interesting to note that biases akin to these have also
been found in the social psychology literature on illusory
correlations in stereotype formation (Hamilton & Gifford,
1976; Kutzner & Fiedler, 2015; Murphy, Schmeer,
Vallée-Tourangeau, Mondragón, & Hilton, 2011). In these
experiments, participants are shown information about
the personality traits of members of two social groups.
Across trials, participants see more information about one
of the groups than about the other and they also see more
people with positive traits than people with negative traits.
Most importantly, the proportion of positive and negative
traits is identical in both social groups. Therefore, there is
no correlation between membership to the majority or the
minority group and the quality (positive vs. negative) of per-
sonality traits. As can be seen, if one assumes that social
groups play the role of cues and that positive and negative
traits play the role of outcomes, this situation is identical to
the one represented in Figure 1G. Although there is no cor-
relation between groups and traits, when participants are
asked to rate the traits of both groups, they systematically
tend to judge the majority group more favorably than the
minority group. In other words, despite the absence of a
real correlation, participants tend to associate the majority
group with the most frequent (positive) personality traits
and the minority group with the least frequent (negative)
personality traits. The interesting point, for our current pur-
poses, is that we can interpret illusory correlations as a
combination of cue- and outcome-density biases, which
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means that this effect may be explained as a contingency-
learning phenomenon.

Single-Process Models of Cue- and
Outcome-Density Biases

Traditionally, demonstrations of cue/outcome-density
biases and illusory correlations have been explained in
terms of simple associative processes analogous to those
assumed to account for classical and instrumental condi-
tioning (e.g., Alloy & Abramson, 1979; López et al., 1998;
Matute, 1996; Murphy et al., 2011; Shanks, 1995; Sherman
et al., 2009; Van Rooy, Van Overwalle, Vanhoomissen,
Labiouse, & French, 2003). The associative learning rule
proposed by Rescorla and Wagner (1972) provides the sim-
plest example of this family of models. According to the
Rescorla-Wagner model, when a cue is followed by an out-
come, an association or link is formed between the repre-
sentations of both stimuli. After each pairing, the strength
of the association is assumed to increase or decrease
according to the formula:

ΔVC�O ¼ α � β � ðλ� VTOTALÞ; ð2Þ
where ΔVC–O is the increase in the strength of the cue-
outcome association after that trial, α and β are learning
rate parameters depending on the salience of the cue
and the salience of the outcome, respectively, λ is a
dummy variable coding whether the outcome was present
or absent in that trial, and VTOTAL is the sum of the asso-
ciative strengths of all the potential cues of the outcome
present in that trial. In addition to the target cue, a con-
textual cue is assumed to remain present in all trials.
The association of the contextual cue with the outcome
is also updated according to Equation 2.

To illustrate how this simple model accounts for cue- and
outcome-density biases, in Figure 2 we show the predic-
tions of the model when given as input the six contingen-
cies depicted in Figures 1B–1G. The top panel shows the
predictions of the model when the contingency is positive
(1B), negative (1C), or zero (1D). As can be seen, eventually
the strength of the cue-outcome association tends to con-
verge to the true contingency, as defined by Δp. By the
end of training, the model learns a positive association
when the cue-outcome contingency is positive and a nega-
tive association when the cue-outcome contingency is neg-
ative. When the cue-outcome contingency is exactly zero,
the associative strength of the cue also tends to move
toward this value. Therefore, the model does a good job
at explaining why people are good at detecting contingen-
cies (see Chapman & Robbins, 1990; Danks, 2003;
Wasserman, Elek, Chatlosh, & Baker, 1993). However,

the model also predicts some systematic deviations from
the true contingency. In the four conditions where the
contingency is zero, depicted in the bottom panel, the
model predicts an overestimation of contingency during
the initial stages of learning. These overestimations are
larger when the outcome (1E) or the cue (1F) is very
frequent, and even larger when both of them are very fre-
quent (1G). Therefore, the model also provides a nice
explanation for cue- and outcome-density biases (Matute,
Vadillo, Blanco, & Musca, 2007; Shanks, 1995; Vadillo &
Luque, 2013).

Regardless of the merits and limits of associative models
(Mitchell, De Houwer, & Lovibond, 2009; Shanks, 2010),
for our present purposes, their most important feature is
that, according to them, the same mechanism explains
(1) why people are sensitive to contingency and (2) why
their judgments are also biased under some conditions.
A single process accounts for accurate and biased contin-
gency detection. As we will discuss below, this is the key
feature of single-process models that distinguishes them
from their dual-process counterparts.

It is interesting to note that this property is also shared by
other early models of biased contingency detection that do
not rely on associative learning algorithms. For example,
instance-based models assume that each cue-outcome trial
is stored in a separate memory trace in long-term memory

Figure 2. Results of a computer simulation of the six contingencies
represented in Figures 1B–1G using the Rescorla-Wagner learning
algorithm. The simulation was conducted using the Java simulator
developed by Alonso, Mondragón, and Fernández (2012). For this
simulation, the learning rate parameters were set to αcue = 0.3,
αcontext = 0.1, βoutcome = β�outcome = 0.8.
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(Fiedler, 1996, 2000; Meiser & Hewstone, 2006; Smith,
1991). Parts of these memory traces may be lost during
the encoding process. In a situation like the one represented
in Figure 1G, the loss of information has very little impact
on the encoding of cell a events, because there are many
redundant memory traces representing the same type of
event. However, information loss can have a severe impact
on the encoding of cells’ c and d events because there are
fewer traces representing them. As a result, the information
encoded in memory contains more (or better) information
about frequent events (cells a) than about infrequent events
(cells c and d). Therefore, information loss explains why
participants tend to perceive a positive contingency when-
ever type a events are more frequent than other events in
the contingency table. Most importantly, according to these
models we do not need to invoke different mechanisms to
explain the cases in which participants are sensitive to the
actual contingency and the instances in which their judg-
ments are biased. Accurate and biased contingency detec-
tion are supposed to arise from the same operating
mechanisms. Therefore, from our point of view, instance-
based theories also belong to the category of single-process
models.

For our present purposes, propositional models can be
considered yet another case of single-process models. In
a thought-provoking series of papers, De Houwer and
colleagues (De Houwer, 2009, 2014; Mitchell et al.,
2009) have suggested that all instances of human contin-
gency learning might depend exclusively on the forma-
tion and truth evaluation of propositions. In contrast to
simple associations, propositions do not just represent
that events in the environment are related to each other:
They also qualify how they are related (Lagnado,
Waldmann, Hagmayer, & Sloman, 2007). For instance,
“cholesterol is a cause of cardiovascular disease” and
“cholesterol is a predictor of cardiovascular disease” are
different propositions. However, the difference between
them cannot be represented in terms of a simple associa-
tion. Although propositional models do not necessarily
exclude the contribution of associative processes (see
Moors, 2014), the representational power of propositions
allows these models to explain aspects of learning that
fall beyond the scope of simple associative models (De
Houwer, Beckers, & Glautier, 2002; Gast & De Houwer,
2012; Zanon, De Houwer, & Gast, 2012). These ideas
have not been formalized in a mathematical model, but
nothing in their current formulation suggests that sepa-
rate mechanisms would be needed to account for accu-
rate and biased contingency detection. For our present
purposes, the idea that all learning depends on the evalu-
ation of propositions represents yet another example of a
single-process model.

Dissociations and Dual-Process
Models

During the last decade, some researchers have abandoned
these explanations in favor of more complex dual-process
theories (Allan et al., 2005, 2007; Perales et al., 2005;
Ratliff & Nosek, 2010). Although differing in the detail,
the core idea of these proposals is that they call upon one
mechanism to explain how people (correctly) track contin-
gencies and a different mechanism to explain why their
judgments are sometimes biased by cue and outcome den-
sity. This proposal is based on the results of several exper-
iments showing what appear to be systematic dissociations
between different dependent measures.

Cue/outcome density biases and illusory correlations are
typically assessed with a numerical causal or contingency
rating that participants provide at the end of the experi-
ment. As explained, these judgments show sensitivity to
both actual contingency and to the biasing effects of cue
and outcome density. However, according to these authors
(Allan et al., 2005, 2007; Perales et al., 2005; Ratliff &
Nosek, 2010), other dependent measures seem to be sensi-
tive only to the actual contingency, showing no trace of cue-
or outcome-density biases. These alternative measures are
assumed to be relatively uninfluenced by higher-order rea-
soning processes, or at least, less influenced by them than
the numerical judgments typically used as dependent vari-
ables. From this point of view, it follows naturally that there
must be a very basic learning mechanism that explains how
people accurately track contingencies and whose output
can be directly observed in these dependent variables. In
contrast, judgments are affected both by contingency and
by cue/outcome density biases. Because measures that
address directly the learning mechanism do not seem to
be sensitive to biases, these must be operating through a
different mechanism that influences judgments but not
the original encoding of information. This is the reason
why these models incorporate different processes to account
for accurate and biased contingency detection. A schematic
representation of the role of learning and judgment pro-
cesses of biased contingency detection is offered in Figure 3.

Therefore, in dual-process models two different and suc-
cessively operating mechanisms are invoked to explain why
people are sensitive to contingency but they are also biased
by the marginal probabilities of the cue and the outcome.
The first mechanism would include basic encoding and
retrieval processes that are highly sensitive to the objective
contingency. The information gathered by this mechanism
would then feed forward to other mechanisms involved in
judgment and decision-making processes. Biases would
appear only at this latter stage.

M. A. Vadillo et al., Biased Contingency Detection 7
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These findings are certainly challenging for the theories
of contingency detection discussed in the previous section,
which in the absence of additional assumptions would typ-
ically anticipate similar effects in all dependent measures of
contingency learning. Note, however, that dissociations are
not a perfect basis to draw inferences about the presence of
one or multiple systems. Borrowing an example from
Chater (2003), following the logic of dissociations one
might conclude that human beings must have different
digestive systems, because some people are allergic to
prawns, while others are allergic to peanuts. Tiny differ-
ences in the way a single mechanism tackles similar prob-
lems might create the illusion that several mechanisms
are involved in an operation that is actually best described
in terms of a single-system process.

In spite of these concerns about the interpretation of disso-
ciations, in the following sections we do not question this
logic, but the reliability of the findings that support dual-pro-
cess models of contingency learning. The evidence for these
models stems from three papers published during the last
decade (Allan et al., 2005; Perales et al., 2005; Ratliff &
Nosek, 2010). Although their theoretical conclusions are quite
consistent, the empirical findings reported in each of them are
noticeably different. In the following sections we review each
of them in turn and discuss their merits and shortcomings. To
overview our criticisms, we argue that some of these findings
seem to be poorly replicable or generalizable, while others are
based on possibly faulty dependent measures.

Cue- and Outcome-Density Biases in
Trial-by-Trial Predictions

The first piece of evidence suggesting that these biases are
not observed in all dependent variables comes from an
interesting experiment conducted by Allan et al. (2005).
Two groups of participants were instructed to discover the
effect of a series of fictitious chemicals (playing the role of

the cue) on the survival of a sample of bacteria in a petri
dish (playing the role of the outcome). In each trial, partici-
pants saw whether or not the chemical was present in a
sample and they were asked to predict whether or not the
bacteria would survive. Immediately after entering their
responses, they were informed of the outcome of the trial
(i.e., whether the bacteria survived) and they proceeded to
the next trial. At the end of training, participants were asked
to rate to what extent the chemicals had a positive or a neg-
ative impact on the survival of bacteria, using a numerical
scale from �100 (negative impact) to 100 (positive impact).
The overall chemical-survival contingency was different for
each group of participants. For one of them, the contingency
was moderately positive (Δp = .467), while for the other one
the contingency was always null (Δp = .000). Each partici-
pant was asked to complete three of these contingency-
detection problems, all of them with the same overall con-
tingency, but with different probabilities of the outcome.
Therefore, the experiment relies on a 2 � 3 factorial design
with contingency as a between-groups manipulation and
probability of the outcome as a within-participant factor.

As the reader might expect, the first finding of Allan et al.
(2005) was that the numerical ratings that participants pro-
vided at the end of each problem were influenced both by
contingency and outcome-probability. That is to say, partici-
pants were able, in general, to track the objective degree of
contingency between each of the chemicals and the survival
of bacteria; however, their ratings were also biased by the
probability of the outcome. This is a replication of the well-
known outcome-density bias discussed in previous sections.

Most interestingly, Allan et al. (2005) found that other
dependent measures seemed to be unaffected by outcome
density, although they were sensitive to the overall cue-
outcome contingency. Specifically, Allan et al. used the dis-
crete yes/no predictions made by participants in every trial
to compute an alternative measure of their sensitivity to
contingency. If the participant believes that there is a statis-
tical connection between the chemicals and the survival of
bacteria, then he or she should predict the survival (i.e.,
respond “yes” to the question of whether the bacteria would
survive in the current trial) more frequently when the chem-
icals are present than when they are not. Following this rea-
soning, it would be possible to measure the extent to which
a participant believes that there is a relationship between the
cue and the outcome using the formula:

Δppred ¼ pð}yes}jcueÞ � pð}yes}j � cueÞ: ð3Þ
Note that this index is based on the same logic that under-
lies the computation of Δp in Equation 1, only that the real
occurrence of the outcome is replaced by the outcome
predictions made by the participant (see Collins &
Shanks, 2002). Therefore, Δppred does not measure the
objective contingency between cue and outcome, but it

Figure 3. Schematic representation of dual-process models of biased
contingency detection.

8 M. A. Vadillo et al., Biased Contingency Detection

Experimental Psychology 2016; Vol. 63(1):3–19 � 2016 Hogrefe Publishing. Distributed under the
Hogrefe OpenMind License http://dx.doi.org/10.1027/a000001

 h
ttp

s:
//e

co
nt

en
t.h

og
re

fe
.c

om
/d

oi
/p

df
/1

0.
10

27
/1

61
8-

31
69

/a
00

03
09

 -
 S

at
ur

da
y,

 A
pr

il 
27

, 2
02

4 
6:

37
:2

9 
A

M
 -

 I
P 

A
dd

re
ss

:3
.1

2.
36

.3
0 



aims at measuring the subjective contingency that the
participant perceives, as revealed by the trial-by-trial
predictions made during training.

When using Δppred as their dependent variable, Allan et al.
(2005) found that this measure was sensitive to cue-outcome
contingency. However, it was absolutely unaffected by
manipulations of the probability of the outcome. This result
led them to conclude that there must be a stage of processing
in which the contingency between cue and outcome or the
target conditional probabilities have already been encoded
but the outcome-density bias is still absent. Then, Δppred
would provide an insight into this basic mechanism that
encodes contingency in a format that is not yet influenced
by the outcome-density bias. Given that the numerical judg-
ments are influenced by both contingency and outcome-prob-
ability, this must mean that judgments are affected not only
by the original encoding of information (sensitive to contin-
gency but free from bias) but also by processes that take place
after encoding (see Figure 3). In other words, the outcome-
density bias is not due to learning or encoding, but to more
sophisticated processes related to judgment and decision
making. Although Allan et al. (2005) explored only the out-
come-density bias, they suggested that a similar approach
might explain the complementary cue-density bias as well.

The results of Allan et al. (2005) and their interpretation
are certainly appealing. If they proved to be reliable, they
would pose insurmountable problems for single-process
models that aim to explain cue- and outcome-density biases
as learning effects. But, how strong is this evidence? To
answer this question, we decided to reanalyze data from
our own laboratory using the strategy followed by Allan
et al. Specifically, we reanalyzed data from nine experimen-
tal conditions exploring the cue-density bias (originally pub-
lished in Blanco et al., 2013; Matute et al., 2011; Vadillo
et al., 2011; Yarritu & Matute, 2015; Yarritu, Matute, &
Vadillo, 2014) and three experimental conditions exploring
the outcome-density bias (originally published in Musca
et al., 2010; Vadillo, Miller, & Matute, 2005). All these

experiments were conducted using the standard experi-
mental paradigm outlined above. In the original reports of
those experiments we only analyzed the judgments that
participants reported at the end of the training phase. How-
ever, we also collected trial-by-trial predictive responses to
maintain participants’ attention and to make sure that they
were following the experiment. These responses can be
used to compute the Δppred index using Equation 3. This
allows us to compare the size of the bias observed in the
Δppred scores with the size of the bias that we observed in
judgments. On the basis of the results of Allan et al., one
should expect a dissociation between these two measures.
More specifically, cue- and outcome-density biases should
have an effect on judgments, but not on Δppred.

In the following analyses, we included data from 848 par-
ticipants tested in 12 conditions included in the articles
mentioned in the previous paragraph.1 Figure 4 plots the

Figure 4. Scatterplot of effect sizes (Cohen’s d) of the cue- and
outcome-density manipulations on the Δppred index and on judgments in
12 experimental conditions. Error bars denote 95% confidence intervals.

1 Blanco et al. (2013) reported two experiments, each of them including two conditions where the effect of the cue-density manipulation was
tested. Cue-density was also manipulated in Matute et al. (2011), Vadillo et al. (2011), and Yarritu and Matute (2015, Experiment 2). The latter
contributed to our analyses with two experimental conditions. Yarritu et al. (2014) reported two experiments manipulating cue density, but
due to their design requirements, trial-by-trial predictions were only requested in the yoked condition of Experiment 1. In that condition the
probability of the cue could actually adopt any value from 0 to 1. Following the original data analysis strategy of Yarritu et al. (2014), we
categorized participants in the “low probability of the cue” condition if they belonged to the one third of the sample with the lowest
probability of the cue, and we categorized them in the “high probability of the cue” condition if they belonged to the one third of the sample
with the highest probability of the cue. As mentioned above, we also included in our analyses three experimental conditions exploring the
outcome-density bias. One of them originally reported by Vadillo et al. (2005, Experiment 3, Group 0.50–0.00 vs. Group 1.00–0.50) and two
reported by Musca et al. (2010).

In most of these experiments participants were asked to provide only one judgment at the end of training. However, in Matute et al. (2011)
and Vadillo et al. (2005, 2011) they were asked to provide several judgments. In the case of Matute et al. (2011) and Vadillo et al. (2011), we
included in the analyses the judgment that yielded the stronger cue-probability bias in each experiment. If anything, selecting judgments that
show strong biases should make it easier to observe any potential dissociation between judgments and trial-by-trial predictions. In the case
of Vadillo et al. (2005) the largest effect of outcome-density was observed for prediction judgments, but this cannot be considered a bias
(because it is normatively appropriate to expect the outcome to happen when its probability is very large; see De Houwer, Vandorpe, &
Beckers, 2007). Because of that, in this case we analyzed their predictive-value judgments.
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effect size (Cohen’s d) of density biases on the Δppred index
against the effect size of the same manipulation on judg-
ments collected at the end of the experiment. As can be
seen, overall, most experiments found clear evidence for
density biases in Δppred. A random-effects meta-analysis
yielded a statistically significant effect of size d = 0.49,
95% CI [0.08, 0.90], z = 2.37, p = .018. Therefore, overall
our results do not replicate the original findings of Allan
et al. (2005): Cue and outcome density do have an effect
on Δppred scores. However, the confidence intervals plotted
in Figure 4 show that the effect of density bias did not reach
statistical significance in some experimental conditions.
In two cases, the effect was even negative. A closer look at
the data shows that in the rare occasions when biases were
not observed in Δppred, they also tended to be absent or smal-
ler than usual in judgments. A meta-regression confirmed
that the effect size of biases on Δppred was moderated by
the effect size of biases on judgments, Q(1) = 5.54,
p = .019. These analyses suggest that cue- and outcome-den-
sity biases can be observed in Δppred and that, when they are
absent, it is not due to a dissociation between judgments and
Δppred, but to any other factor that affects both measures.

To show that these results are robust, we also analyzed
the individual data of the participants tested in all the exper-
imental conditions shown in Figure 4. Across all conditions,
the cue-/outcome-density manipulation had an effect on
Δppred, t(846) = 6.20, p < .001, d = 0.43. This result also held
when data from experiments exploring cue- and outcome-
density biases were analyzed separately: t(659) = 4.97,
p < .001, d = 0.37, and t(185) = 4.01, p < .001, d = 0.59,
respectively. Not surprisingly, the two dependent measures,
judgments and Δppred, were significantly correlated, r = .27,
p < .001, and this correlation remained significant when
data from cue- and outcome-density biases were analyzed
independently: r = .28, p < .001, and r = .24, p < .001,
respectively. Overall the data shown in Figure 4 and these
additional analyses are inconsistent with the hypothesis that
trial-by-trial predictions are unbiased by the probability of
the cue/outcome or that radically different results are
observed with judgments and trial-by-trial predictions. Thus,
there is no need to postulate different mechanisms to
account for judgments and for trial-by-trial predictions.

This being said, Figure 4 also reveals that some of our
studies failed to find a significant effect of the cue/outcome
density manipulation on Δppred. To some extent, this feature
of our results can be considered a replication of Allan et al.
(2005). But as seen in Figure 4 and in the previous analy-
ses, this can hardly be considered strong evidence for a dis-
sociation between judgments and Δppred. The fact that
sometimes Δppred fails to yield significant results may be
due to its reduced reliability compared to judgments. There
are many situations where the use of unreliable or

insensitive measures can produce patterns of results that
look like dissociations but do not require a dual-process
account (Shanks & St. John, 1994; Vadillo, Konstantinidis,
& Shanks, 2016). Consistent with this interpretation, there
are good reasons why Δppred might be an imperfect index
of contingency learning, as we discuss in subsequent
sections.

Signal Detection Theory Analyses of
Trial-By-Trial Predictions

Perales et al. (2005, Experiment 1) found a dissociation
strikingly similar to the one reported by Allan et al.
(2005). In the study of Perales et al., two groups of partici-
pants were exposed to several contingency-learning prob-
lems where they had to learn the relationship between the
activation of a fictitious minefield and the explosion of
enemy tanks. In each trial, participants were first presented
with information about whether the minefield was active
and were asked to predict by means of a yes/no response
whether or not they thought that the tanks would explode
in that trial. After entering their predictions, they were given
feedback and they proceeded to the next trial. For one of
the groups, the contingency between the minefield and
the explosions was always positive, Δp = .50, while the con-
tingency was always zero for all the problems presented to
the other group of participants. Within participants, the
probability of the cue was manipulated with two levels, high
(.75) and low (.25). At the end of each problem, participants
were asked to rate the strength of the causal relation
between the activation of the minefield and the explosion
of tanks. Consistent with previous reports, Perales et al.
found that these numerical judgments were sensitive not
only to the contingency manipulation, but also to the cue-
density manipulation. That is to say, for a specific level of
contingency, judgments tended to vary with the probability
of the cue, replicating the well-known cue-density bias.
However, as in the case of Allan et al., Perales et al. found
that other dependent measures, also computed from
participants’ trial-by-trial responses, were sensitive only to
contingency and were largely immune to the cue-density bias.

Unlike Allan et al. (2005), Perales et al. (2005, Experi-
ment 1) did not convert trial-by-trial predictions to Δppred
but, instead, they computed two alternative measures
inspired in Signal Detection Theory (SDT) analyses. One
of them, the criterion for responding, was a measure of par-
ticipants’ overall tendency to predict that the outcome will
occur. The second one, d0, was the discriminability index of
SDT analyses and aimed at measuring participants’ ability
to discriminate when the outcome was more likely to

10 M. A. Vadillo et al., Biased Contingency Detection
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appear and when it was less likely to appear. For reasons
that will become obvious later, only this second measure
is relevant for the present discussion. To compute the d0

index, Perales et al. registered the “hit rate” of each partic-
ipant (i.e., the proportion of trials in which they correctly
predicted that the outcome would occur, among all trials
where the outcome was present) and their “false alarm
rate” (i.e., the proportion of trials in which they incorrectly
predicted the outcome, among all trials where the outcome
was absent). Based on these two measures, d0 can be easily
computed as

d0 ¼ zðhit rateÞ � zðfalse alarm rateÞ; ð4Þ
where z is the inverse of the normal cumulative
density function. Crucially, this equation ignores com-
pletely whether participants made their predictions on
cue-present or on cue-absent trials. The only important
thing is whether they correctly predicted the outcome
when it was going to happen and whether they incorrectly
predicted the outcome when it was not going to happen.
In other words, the d0 index measures to what extent par-
ticipants are good at discriminating when the outcome
will be presented and when it will not. The rationale for
using this index as a measure of participants’ sensitivity
to contingency is that, in principle, if participants have
learned the correct cue-outcome contingency, they should
be able to make more accurate predictions, and this
should yield a higher d0.

The key finding of Perales et al. (2005, Experiment 1)
was that participants’ d0 scores turned out to be sensitive
just to the contingency manipulation, but not to the cue-
density manipulation. This parallels Allan et al.’s (2005)
finding that Δppred was affected by manipulations of
contingency, but not by manipulations of the probability
of the outcome. Taken collectively, both experiments
converged on the same idea: There are some dependent
measures that reflect that participants have learned the
cue-outcome contingency, but which nevertheless show
no trace of cue- or outcome-density bias. This stands in
stark contrast with the patterns of results found in numeri-
cal judgments, which are sensitive to both contingency and
density biases.

Perales et al. discussed several dual-process accounts
that could explain these dissociations. Although differing
in the detail, all of them dovetailed with the idea that there
is a basic encoding mechanism that tracks cue-outcome
contingency in a format free from any cue- or outcome-
density bias. The d0 index would be a direct measure of this
unbiased learning process. The density biases observed in
judgments must then be attributed to other mechanisms
that intervene in later stages of processing. This account fits
well with the general framework outlined in Figure 3.

However, a closer inspection of the results reported by
Perales et al. (2005, Experiment 1) suggests that alternative
interpretations are possible. A first striking feature of the
results is that the manipulation of the probability of the
cue did in fact seem to have an effect on d0, although this
effect was only marginally significant (p = .09,
ηp

2 = .067). The authors argued that this effect was “far
too small to account for the significant effect of cause-
density [i.e., cue-density] on judgments.” (p. 1109). How-
ever, this argumentation is only valid if one assumes that
the validity, reliability, and sensitivity of d0 as a dependent
measure are comparable to those of judgments. If d0 turned
out to be less sensitive, then the smaller effect size of the
cue-density effect found of d0 would be very poor evidence
for a dissociation.

Are there any reasons to suspect that d0 is not a sensitive
measure for cue- or outcome-density biases? We think so.
The problems of d0 as a measure of learning are particularly
obvious in the two null-contingency conditions of Perales
et al. (2005, Experiment 1). In those conditions, the proba-
bility of the outcome was always .50, no matter whether the
cue was present or not. In this situation, there was nothing
participants could do to predict the outcome successfully.
The outcome and its absence were equally likely and the
cue did not offer any information to make the outcome
more predictable. Furthermore, this was the case in both
the high cue-density and the low cue-density conditions:
The probability of the cue was higher in one condition than
in the other, but this did not change the fact that the out-
come was equally unpredictable in both conditions. There-
fore, it is not surprising that participants in both conditions
got d0 values indistinguishable from zero. Note that this
does not mean that participants had the same perception
of contingency in those two conditions. It only means that
in those particular conditions, nothing participants learn
can help them make better outcome predictions as mea-
sured by d0. But crucially, if all participants produce a d0

of zero regardless of their predictions, then their score can-
not be used as a measure of their perception of
contingency.

A computer simulation provides a simple means to illus-
trate the problems of d0 as a measure of contingency learn-
ing. In the following simulation we computed d0 for a large
number of simulated participants exposed to the same con-
tingencies used in Perales et al. (2005, Experiment 1). The
labels PC-HD, PC-LD, NC-HD, and NC-LD shown in
Figure 5 refer to the four experimental conditions tested
by Perales et al. These labels denote whether contingency
was positive (PC) or null (NC) and whether the density of
the cue was high (HD) or low (LD). For each experimental
condition, we computed how many correct and incorrect
responses a simulated participant would get. Then, we used
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this information to compute the d0 of that simulated
participant using Equation 4.2

For each condition, we simulated 1,000 participants with
nine different response distributions. The rationale for sim-
ulating a wide variety of response strategies is that, if d0 is a
valid measure of learning, this index should adopt different
values when participants behave differently. Imagine that
one participant learns that there is positive contingency
between the cue and the outcome. This participant should
say “yes” very frequently when asked whether the outcome
will follow the cue and he/she should say “no” very fre-
quently when asked whether the outcome will appear in a
trial in which the cue was absent. Now imagine a second
participant who learns that there is no contingency between
cue and outcome. This participant will be just as likely to
predict the outcome in cue-present and in cue-absent trials.
If d0 is a good measure of contingency learning, these two
participants should get different d0 scores. In contrast, if
participants who act on the basis of different beliefs about
the cue-outcome contingency obtain the same d0 score, this
would imply that d0 is not a valid measure of contingency
detection. To minimize the impact of sampling error on
the exact number of hits and false alarms, we run 1,000
simulations for each combination of experimental condition
and response distribution.

Each of the nine series of data shown in Figure 5 refers to
a different response distribution (e.g., 25/75, 50/50, . . .).
The first number (25, 50, or 75) refers to the probability
of predicting the outcome in the presence of the cue and
the second number (also 25, 50, or 75) refers to the proba-
bility of predicting the outcome in the absence of the cue.

For instance, a simulated participant with response strategy
75/25 would predict the outcome with probability .75 if the
cue was present and with probability .25 if the cue was
absent (which is consistent with the belief in a positive con-
tingency). Similarly, a simulated participant with response
strategy 75/75 would predict the outcome with probability
.75 regardless of whether the cue is present or absent
(which is consistent with the belief in a null contingency).

Consistent with our previous discussion, Figure 5 shows
that all simulated participants got almost identical d0 scores
in the null-contingency conditions (right-most half of the
figure). In other words, the d0 scores obtained by those par-
ticipants reveal absolutely nothing about their pattern of
performance. In these null-contingency conditions, a partic-
ipant who acted as if there were a positive cue-outcome
contingency (e.g., 75/25) would receive virtually the same
score as a participant who acted as if contingency were neg-
ative (e.g., 25/75). Similarly, a participant who was very
prone to predicting the outcome (e.g., 75/75) and a partici-
pant who was very reluctant to predict the outcome (e.g.,
25/25) would obtain similar d0 scores. These predictions
do not differ across conditions with different cue-densities.
This confirms our suspicion that the d0 scores obtained by
Perales et al. (2005, Experiment 1) in the NC conditions tell
us nothing about the participants performance’, let alone
about their beliefs regarding the cue-outcome contingency
or their outcome expectancies.

In contrast, the left-hand side of Figure 5 shows that d0

can be a sensitive measure of the perception of contingency
in the positive contingency (PC) conditions tested by
Perales et al. In these conditions, different patterns of

Figure 5. Simulated d0 scores of partic-
ipants with different response strate-
gies in the four experimental conditions
included in Perales et al. (2005, Exper-
iment 1).

2 In our simulations, occasionally the hit or the false-alarm rates had values of 0 or 1. The z function for these values yields �1 and 1,
respectively. To avoid this problem, we followed the correction suggested by Snodgrass and Corwin (1988). Specifically, in the computation of
the hit rate, we added 0.001 to the number of hits and 0.002 to the number of outcome-present trials. The same correction was used in the
computation of the false-alarm rate. This correction only makes a minimal difference in the value of d0, except when either the hit or the false-
alarm rates have extreme (0 or 1) values.

12 M. A. Vadillo et al., Biased Contingency Detection
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responding do give rise to different d0 scores, suggesting
that d0 can reveal something about participants’ beliefs or
about their response strategies. Therefore, it is only in these
conditions with positive contingencies that one can expect
to measure differences in performance with d0. It is interest-
ing to note that visual inspection of the data reported by
Perales et al. (2005) confirms that the trend towards a
cue-density bias was stronger in the PC condition than in
the NC condition. When one takes into account that one
half of the experiment (the two NC conditions) is affected
by a methodological artifact, it becomes less surprising that
the cue-density manipulation only had a marginally
significant effect on d0.

Different Processes or Different
Strategies?

This being said, we note that in the PC conditions the
cue-density effect observed in d0 still looks relatively small,
compared to the large effect found in participants’ judg-
ments. Going back to the reanalysis of our own studies
presented in our previous section, we also found there that,
in some occasions, cue/outcome density manipulations
seemed to have a stronger effect on judgments than on
Δppred. Based on this evidence, it appears that, in general,
all the dependent measures computed from trial-by-trial
predictions (either Δppred or d0) are less sensitive than
numerical judgments. Is there any reason why these depen-
dent measures should be less reliable? As we will show
below, we suspect that the data reported by Allan et al.
(2005) and Perales et al. (2005) provide an interesting
insight into this question.

Imagine that two participants, A and B, have been
exposed to exactly the same sequence of trials and that,
as a result, they end up having the same beliefs about the
relationship between a cue and an outcome. For instance,
imagine that both of them have learned that the probability
of the outcome given the cue is .75 and that the probability
of the outcome given the absence of the cue is .25. This
means that both of them would believe, implicitly or explic-
itly, that there is a moderate positive contingency between
cue and outcome (i.e., that the outcome is more likely to
appear in the presence of the cue than in its absence).
Now, let us assume that both participants are presented
again with a series of trials where the cue is present or
absent and they are asked to predict whether or not the out-
come will be presented in each trial. Participant A might
consider that, because the probability of the outcome given
the cue is .75, he should predict the outcome in roughly
75% of the trials where the cue is present. And, similarly,

because the probability of the outcome given the absence
of the cue is .25, he predicts the outcome in approximately
25% of the trials where the cue is absent. The behavior of
this participant would show what researchers call “probabil-
ity matching” (Nies, 1962; Shanks, Tunney, & McCarthy,
2002; Tversky & Edwards, 1966), that is, his predictions
would match the probabilities seen (or perceived) in the
environment.

Now imagine that Participant B is asked to do the same
task. But Participant B has a different goal in mind: He
wants to be right as many times as possible. If the outcome
appears 75% of the times when the cue is present, then pre-
dicting the outcome on 75% of the trials is not a perfect
strategy. If he did that, on average, he would be right on
56.25% of the trials (i.e., .75 � .75). In contrast, if he always
predicts the outcome when the cue is present, he will be
correct 75% of the times (i.e., 1.00 � .75). If he wants to
maximize the number of correct outcome predictions, this
is a much more rational strategy. Following the same logic,
if the probability of the outcome in the absence of the cue is
.25, it makes sense to always predict the absence of the out-
come. Doing that will allow him to be correct on 75% of the
trials. Our point is that if a participant wants to maximize
the number of correct predictions, he will predict the out-
come whenever he thinks that its probability is higher than
.50 and he will predict the absence of the outcome in any
other case. Not surprisingly, research with human and non-
human animals shows that maximization is a typical
response strategy in many situations (e.g., Unturbe &
Coromias, 2007).

Interestingly, although both participants, A and B, base
their responses on the same ‘beliefs’, their behavior is rad-
ically different because they pursue different goals. This has
important implications for our review of the results reported
by Allan et al. (2005) and Perales et al. (2005). If trial-by-
trial predictions do not only depend on the perceived con-
tingency but also on response strategies like probability
matching or maximization, then any dependent variable
computed from them (like Δppred or d0) will be necessarily
noisy and unreliable. This is particularly problematic when
many participants rely on a maximization strategy. For
instance, if we computed Δppred for Participant A in our pre-
vious example, that would yield an approximate value of
.50, which reflects quite well his beliefs about the contin-
gency between cue and outcome. However, if we computed
Δppred for Participant B, this would yield a value of 1.00,
which is a gross overestimation of his true beliefs. These
two participants would also receive different d0 scores.

In the case of Perales et al. (2005, Experiment 1), there is
clear evidence of probability maximization. The data
reported in the Appendix of Perales et al. confirm that par-
ticipants in the PC group predicted the outcome in around
92–93% of cue-present trials and in 12–13% of cue-absent
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trials. In the case of Allan et al. (2005) there is no obvious
evidence for maximization in their noncontingent condi-
tion, but there appears to be such a trend in the contingent
condition. Their Figure 5 suggests that although the actual
probability of the outcome given the cue varied from .567 to
.900, participants predicted the outcome in 70–90% of
cue-present trials. Similarly, although the probability of
the outcome in the absence of the cue ranged from .100
to .667, participants predicted the outcome in 10–30% of
cue-absent trials. This pattern is perhaps less extreme than
the one found in Perales et al. (2005), but it does neverthe-
less suggest that many of their participants must have used
a maximization strategy. In either case, this strategy makes
Δppred and d0 less sensitive to any manipulation. The lack of
sensitivity might explain why they failed to find any effect
of cue and outcome density on these dependent variables.

It is interesting to note that participants are more likely to
become “maximizers” in relatively long experiments, which
provide more opportunities to develop optimal response
strategies (Shanks et al., 2002). This might explain the
diverging results obtained by Allan et al. (2005) and Perales
et al. (2005) and our own experiments. In their experi-
ments, cue and outcome density were manipulated within-
participants. To accomplish this, all participants had to com-
plete the contingency learning several times. In contrast, in
our experiments all the manipulations were conducted
between groups, reducing substantially the length of the
experiment and, consequently, the opportunities to develop
sophisticated response strategies like maximization.

Illusory Correlations in the Implicit
Association Test

Dissociations between judgments and trial-by-trial predic-
tions are not the only piece of evidence in favor of dual-
process models of biased contingency detection. This
approach received convergent support from a recent study
by Ratliff and Nosek (2010) that found a similar dissocia-
tion between different measures of illusory correlations in
stereotype formation, suggesting that two or more
processes might also be involved in this effect.

As explained in previous sections, most experiments on
illusory correlations in stereotype formation rely on a fairly
standard procedure (Hamilton & Gifford, 1976). Partici-
pants are presented with positive and negative traits of
members of two different social groups on a trial-by-trial
basis. Crucially, there are more members of one group
(majority) than of the other (minority) and, regardless of
group, most of the members show positive traits. Although
the proportion of positive and negative traits is identical for
the majority and the minority groups, people tend to make

more positive evaluations of the majority group when asked
to judge both groups at the end of training. Illusory correla-
tions in stereotypes and cue/outcome density biases have
been explored in quite different literatures, but both effects
are clearly related and can be explained by the same or very
similar models (Murphy et al., 2011; Sherman et al., 2009;
Van Rooy et al., 2003).

Illusory correlations are typically assessed by means of
numerical ratings (similar to judgments in contingency-
detection experiments) or by asking participants to recall
which positive or negative traits were observed in the
majority or the minority group. However, Ratliff and Nosek
(2010) wondered whether the same illusory-correlation
effects would be found in an alternative test that is
supposed to provide a cleaner measure of the underlying
attitudes of participants: The Implicit Association Test
(IAT; Greenwald, McGhee, & Schwartz, 1998). Unlike tradi-
tional questionnaires, the IAT is a reaction-time test that is
traditionally assumed to measure implicit attitudes with
little interference from higher-order cognitive processes
(De Houwer, Teige-Mocigmba, Spruyt, & Moors, 2009;
Gawronski, LeBel, & Peters, 2007; Nosek, Hawkins, &
Frazier, 2011). Following this idea, if illusory correlations
require the operation of reasoning or inferential processes,
then they should not be observed in the IAT. In contrast, if
only very elemental associative processes are responsible
for illusory correlations, then the IAT should be able to
detect them.

Ratliff and Nosek (2010) found the standard illusory-
correlation effect in the responses to the explicit question-
naire. However, there was no hint of the effect in the IAT
scores in any of their two experiments. Most importantly,
the absence of effects cannot be attributed to the lack of
validity of the IAT: The IAT was sensitive to the valence
of the majority and the minority groups when there was a
correlation between membership to one of them and
the positive or negative personality traits. Nor can they be
attributed to a lack of statistical power, given that the
results were replicated in an online experiment with almost
900 participants.

Ratliff and Nosek (2010) interpreted these results in
terms of a dual-process model (Gawronski & Bodenhausen,
2006) surprisingly similar to that invoked by Allan et al.
(2005) and Perales et al. (2005) in the domain of contin-
gency learning. According to them, the IAT would be only
sensitive to the original encoding of associations in mem-
ory. From this point of view, the fact that performance in
the IAT was unaffected by the illusory-correlation
manipulation indicates that participants in their experiment
correctly learned that there was no correlation between
belonging to one group or the other and having
positive or negative personality traits. Therefore, the
illusory-correlation effect observed in explicit judgments
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must have been due to additional higher-order cognitive
processes that took place on a later stage, and not to the ori-
ginal learning mechanism responsible for the initial encod-
ing of the information (see Figure 3). As in the case of the
results reported by Allan et al. and Perales et al., these
results pose problems for any single-process model that
assumes that illusory correlations are the product of the
same mechanisms responsible for the detection of contin-
gency. If a single process were responsible for both sensitiv-
ity to contingency and for density biases, why should an
IAT be sensitive to one of these manipulations (contin-
gency) but not to the other (density)?

Before drawing any conclusion, it is convenient to review
all the available evidence regarding this dissociation. Until
recently, the study conducted by Ratliff and Nosek (2010)
was the only experimental work that had tried to detect
illusory correlations with the IAT. However, the latest
attempt to replicate this result using a similar methodology
has failed to find any dissociation between explicit mea-
sures and the IAT. Using a very similar procedure to Ratliff
and Nosek, Carraro, Negri, Castelli, and Pastore (2014) did
find an illusory correlation on the IAT, showing that the ori-
ginal dissociation was either not reliable or, more likely, not
generalizable to similar but not identical conditions. In a
similar vein, a recent experiment conducted in our labora-
tory (Vadillo, De Houwer, De Schryver, Ortega-Castro, &
Matute, 2013) found an outcome-density effect using the
IAT. The divergences with Ratliff and Nosek are less sur-
prising in this case, because Vadillo et al. used a radically
different design and procedure. However, this discrepancy
converges to the idea that the failure of the IAT to detect
illusory correlations might not be a generalizable result.

To better illustrate the results found with the IAT,
Figure 6 depicts a forest plot with the divergent results of
these studies.3 As can be seen, the only firm conclusion that
can be drawn on the basis of this evidence is that the results
are strikingly variable. In fact, the meta-analysis of these
studies yielded an unusually large heterogeneity,
Q(4) = 134.18, p < .001. Even the replication that Carraro
et al. (2014) reported in their general discussion yielded
results notably distant from those of their main study,
although both of them were statistically significant. This
variability suggests that whether or not illusory correlations
are observed in the IAT probably depends on a number of
moderators that we still ignore. As shown in Figure 6, the
95% confidence interval of the random-effects model
includes zero. An advocate of dual-process models might
claim that this null result of the meta-analysis supports
the claim that illusory correlations are not found in implicit
measures like the IAT. However, the confidence interval
does not just include zero: It extends over a large number
of positive effect sizes. On the basis of the collective evi-
dence, any value from �0.13 to a massive 1.16 could be
an accurate estimate of the average Cohen’s d. We doubt
that this evidence is clear or robust enough to abandon sin-
gle-process models of illusory correlations, which offer a
simple and parsimonious explanation for a large body of
data (Allan, 1993; Fiedler, 2000; López et al., 1998; Shanks,
1995). Even more so, if we keep in mind that the only con-
verging evidence from Allan et al. (2005) and Perales et al.
(2005) is open to criticism.

General Discussion

In the previous sections we have reviewed the studies that
have found dissociations in cue- and outcome-density
effects across dependent variables (Allan et al., 2005;
Perales et al., 2005; Ratliff & Nosek, 2010). A common
result of these experiments is that there are some depen-
dent measures that only show sensitivity to contingency
(e.g., Δppred, d0, or IAT scores), while other dependent mea-
sures (e.g., contingency judgments) show sensitivity to both
contingency and cue/outcome density. On the basis of this
evidence, it has been suggested that two separate mecha-
nisms are needed to explain (1) why people are able to learn
the correct cue-outcome contingencies and (2) why their
judgments are influenced not only by contingency but also
by the overall probabilities of the cue and the outcome.
However, on closer inspection, it appears that this evidence
might not be reliable enough to justify this theoretical

Figure 6. Forest plot of a meta-analysis exploring the results of the
experiments that have measured illusory correlation effects in the IAT.
Error bars denote 95% confidence intervals.

3 All the effect sizes included in the meta-analyses were computed from the t-values reported in the studies following the equations suggested
by Lakens (2013), even when this resulted in d values slightly different from those reported by the authors. The random-effects meta-analysis
was conducted using the “metafor” R package (Viechtbauer, 2010).
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interpretation. A review of the available evidence from our
laboratory and from other research groups shows that some
of these results do not seem to be replicable or do not gen-
eralize easily to similar experimental settings. In our exper-
iments, cue- and outcome-density manipulations seem to
have a significant impact on all dependent measures.
Similarly, our simulations show that some of the dissocia-
tions previously reported in the literature might be due to
simple methodological artifacts resulting from aspects of
the design and the computation of the dependent variable.

Given the lack of strong evidence in favor of these dual-
process accounts, we think that it is premature to abandon
the idea that sensitivity to contingency and density biases
are both attributable to the operation of a single mecha-
nism. As mentioned in the Introduction, this idea is an
essential feature of many associative models that were orig-
inally invoked to account for cue- and outcome-density
effects (López et al., 1998; Shanks, 1995; Sherman et al.,
2009). It is also a central feature of alternative models of
biased contingency detection, such as instance-based mod-
els (Fiedler, 1996; Meiser & Hewstone, 2006; Smith, 1991).
Beyond the specific details of these models, their common
feature is that they all share the assumption that the same
mechanism that is responsible for detecting and encoding
the relationship between cues and outcomes is also respon-
sible for density biases. In other words, there is no level of
representation in the cognitive system where contingency
information is represented in a format that is free from
cue- or outcome-density biases.

Note that, although we favor single-process models of
biased contingency detection, we do not ignore the fact that
different processes might contribute to each of the depen-
dent variables used in this kind of research. We do not
question the idea that there are manipulations that might
affect one dependent variable without affecting others. In
fact, part of our own research has been directed at showing
that judgments of contingency can vary considerably
depending on seemingly minor procedural details like the
wording of the test question (Matute, Vegas, & De Marez,
2002; Vadillo & Matute, 2007; Vadillo et al., 2005; see also
Crocker, 1982; De Houwer et al., 2007; Perales & Shanks,
2008). Moreover, part of our discussion of Perales et al.
(2005) relies on the idea that participants sometimes adopt
response strategies that might mask their true perception of
contingency. What we are suggesting here is that there are
no strong reasons to assume that there are two different
levels of representation of contingency information, one
that closely mirrors objective contingencies and one where
that information is biased by factors like the probability of
the cue or the probability of the outcome. In the absence
of stronger evidence, it appears more parsimonious
to assume that a single representation is learned
during contingency-learning experiments and that this

representation is biased by cue and outcome density at
the encoding level.

Dual-process models of biased contingency detection
share some ideas with other dichotomist models of cogni-
tion (Evans & Over, 1996; Kahneman, 2011; Osman,
2004; Sloman, 1996; Stanovich & West, 2000). There is
a crucial difference, though, between the dual models
reviewed in this article and other dual-process models. Tra-
ditionally, dual models have tended to explain biases and
cognitive illusions attributing them to very simple cognitive
mechanisms that operate effortlessly and in a relatively
automatic manner, usually related to simple encoding or
retrieval processes. More complex cognitive mechanisms,
usually strategic processes related to judgment and decision
making, have been invoked to explain why people are
sometimes able to overcome the harmful effect of these
biases and intuitive reactions (e.g., Kahneman, 2011). Inter-
estingly, the dual-process models of biased contingency
detection that we review here make the opposite interpreta-
tion: Correct contingency detection is attributed to the oper-
ation of basic encoding and retrieval processes, while biased
judgments are attributed to more sophisticated judgment
and decision-making processes. We might even say that
these models present a benign view of biases in contingency
detection: Although people might show a bias in their judg-
ments, deep inside their cognitive system there is some level
of representation where information is represented accu-
rately (a similar perspective can be found in De Neys, 2012).

The question of whether biases in contingency detection
are due to basic encoding and retrieval processes or
whether they reflect the operation of judgment and deci-
sion-making processes is not only important from a theoret-
ical point of view. As mentioned above, it has been
suggested that these biases might contribute to the develop-
ment of superstitious and pseudoscientific thinking
(Gilovich, 1991; Lindeman & Svedholm, 2012; Matute
et al., 2011, 2015; Redelmeier & Tversky, 1996; Vyse,
1997). Given the societal costs of these and other biases,
cognitive psychologists have started to develop a number
of interventions and guidelines for protecting people from
cognitive biases (Barbería et al., 2013; Lewandowsky,
Ecker, Seifer, Schwarz, & Cook, 2012; Lilienfeld, Ammirati,
& Landfield, 2009; Schmaltz & Lilienfeld, 2014). Interven-
tions designed to reduce biases can only be successful to
the extent that they are based on an accurate view of their
underlying mechanisms. If the underlying information was
somehow encoded in a bias-free format, as suggested by
dual-process models of contingency learning, these beliefs
should be relatively easy to modify. Teaching people how
to use more rationally the information and intuitions they
already have should suffice to overcome these biases. This
prediction stands in stark contrast with the well-known fact
that superstitions are difficult to modify or eradicate
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(Arkes, 1991; Lilienfeld et al., 2009; Nyhan, Reifler, Richey,
& Freed, 2014; Pronin, Gilovich, & Ross, 2004; Smith &
Slack, 2015). We think that the persisting effect of biases
is more consistent with the view that these beliefs are
hardwired in the way people encode information about
the relationship between events, as suggested by
single-process models. Based on the evidence we have dis-
cussed so far, it seems safe to suggest that attempts to de-
bias superstitions and misperceptions of contingency
should include teaching people to look for unbiased
information.
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