Skip to main content

An Exploratory TMS Study on Prefrontal Lateralization in Valence Categorization of Facial Expressions

Published Online: Doi: https://doi.org/10.1027/1618-3169/a000363

Abstract. Converging neuroimaging and patient data suggest that the dorsolateral prefrontal cortex (DLPFC) is involved in emotional processing. However, it is still not clear whether the DLPFC in the left and right hemisphere is differentially involved in emotion recognition depending on the emotion considered. Here we used transcranial magnetic stimulation (TMS) to shed light on the possible causal role of the left and right DLPFC in encoding valence of positive and negative emotional facial expressions. Participants were required to indicate whether a series of faces displayed a positive or negative expression, while TMS was delivered over the right DLPFC, the left DLPFC, and a control site (vertex). Interfering with activity in both the left and right DLPFC delayed valence categorization (compared to control stimulation) to a similar extent irrespective of emotion type. Overall, we failed to demonstrate any valence-related lateralization in the DLPFC by using TMS. Possible methodological limitations are discussed.

References

  • Balconi, M. & Ferrari, C. (2012). rTMS stimulation on left DLPFC affects emotional cue retrieval as a function of anxiety level and gender. Depression and Anxiety, 29, 976–982. doi: 10.1002/da.21968 First citation in articleCrossref MedlineGoogle Scholar

  • Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278. doi: 10.1016/j.jml.2012.11.001 First citation in articleCrossrefGoogle Scholar

  • Bermpohl, F., Fregni, F., Boggio, P. S., Thut, G., Northoff, G., Otachi, P. T., … Pascual-Leone, A. (2005). Left prefrontal repetitive transcranial magnetic stimulation impairs performance in affective go/no-go task. Neuroreport, 16, 615–619. First citation in articleCrossref MedlineGoogle Scholar

  • Bona, S., Herbert, A., Toneatto, C., Silvanto, J. & Cattaneo, Z. (2014). The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: An fMRI-guided TMS study. Cortex, 51, 46–55. doi: 10.1016/j.cortex.2013.11.004 First citation in articleCrossref MedlineGoogle Scholar

  • Campana, G., Cowey, A., Casco, C., Oudsen, I. & Walsh, V. (2007). Left frontal eye field remembers “where” but not “what”. Neuropsychologia, 45, 2340–2345. doi: 10.1016/j.neuropsychologia.2007.02.009 First citation in articleCrossref MedlineGoogle Scholar

  • Cattaneo, Z., Lega, C., Boehringer, J., Gallucci, M., Girelli, L. & Carbon, C.-C. (2014a). Happiness takes you right: The effect of emotional stimuli on line bisection. Cognition & Emotion, 28, 325–344. doi: 10.1080/02699931.2013.824871 First citation in articleCrossref MedlineGoogle Scholar

  • Cattaneo, Z., Lega, C., Gardelli, C., Merabet, L. B., Cela-Conde, C. J. & Nadal, M. (2014b). The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: A TMS study. NeuroImage, 99, 443–450. doi: 10.1016/j.neuroimage.2014.05.037 First citation in articleCrossref MedlineGoogle Scholar

  • Cattaneo, Z., Mattavelli, G., Papagno, C., Herbert, A. & Silvanto, J. (2011). The role of the human extrastriate visual cortex in mirror symmetry discrimination: A TMS-adaptation study. Brain and Cognition, 77, 120–127. doi: 10.1016/j.bandc.2011.04.007 First citation in articleCrossref MedlineGoogle Scholar

  • Cattaneo, Z., Mattavelli, G., Platania, E. & Papagno, C. (2011). The role of the prefrontal cortex in controlling gender-stereotypical associations: A TMS investigation. NeuroImage, 56, 1839–1846. doi: 10.1016/j.neuroimage.2011.02.037 First citation in articleCrossref MedlineGoogle Scholar

  • Chen, C.-Y., Muggleton, N. G., Tzeng, O. J. L., Hung, D. L. & Juan, C.-H. (2009). Control of prepotent responses by the superior medial frontal cortex. NeuroImage, 44, 537–545. doi: 10.1016/j.neuroimage.2008.09.005 First citation in articleCrossref MedlineGoogle Scholar

  • Costa, T., Cauda, F., Crini, M., Tatu, M. K., Celeghin, A., de Gelder, B. & Tamietto, M. (2013). Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Social Cognitive and Affective Neuroscience, 9, 1690–1703. doi: 10.1093/scan/nst164 First citation in articleCrossref MedlineGoogle Scholar

  • d’Alfonso, A. A., van Honk, J., Hermans, E., Postma, A. & de Haan, E. H. (2000). Laterality effects in selective attention to threat after repetitive transcranial magnetic stimulation at the prefrontal cortex in female subjects. Neuroscience Letters, 280, 195–198. doi: 10.1016/S0304-3940(00)00781-3 First citation in articleCrossref MedlineGoogle Scholar

  • Davidson, R. J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition, 20, 125–151. doi: 10.1016/0278-2626(92)90065-T First citation in articleCrossref MedlineGoogle Scholar

  • Davidson, R. J. (1995). Cerebral asymmetry, emotion, and affective style. In R. J. DavidsonK. HugdahlEds., Brain asymmetry (pp. 361–388). Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Davidson, R. J., Ekman, P., Saron, C. D., Senulis, J. A. & Friesen, W. V. (1990). Approach-withdrawal and cerebral asymmetry: Emotional expression and brain physiology I. Journal of Personality and Social Psychology, 58, 330–341. doi: 10.1037/0022-3514.58.2.330 First citation in articleCrossref MedlineGoogle Scholar

  • Davidson, R. J. & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Science, 3, 11–21. doi: 10.1016/S1364-6613(98)01265-0 First citation in articleCrossref MedlineGoogle Scholar

  • de Gelder, B., van Honk, J. & Tamietto, M. (2011). Emotion in the brain: Of low roads, high roads and roads less travelled. Nature Reviews Neuroscience, 12, 425. doi: 10.1038/nrn2920-c1 First citation in articleCrossref MedlineGoogle Scholar

  • De Raedt, R., Leyman, L., Baeken, C., Van Schuerbeek, P., Luypaert, R., Vanderhasselt, M.-A. & Dannlowski, U. (2010). Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: An event-related fMRI study. Biological Psychology, 85, 487–495. doi: 10.1016/j.biopsycho.2010.09.015 First citation in articleCrossref MedlineGoogle Scholar

  • Demaree, H. A., Everhart, D. E., Youngstrom, E. A. & Harrison, D. W. (2005). Brain lateralization of emotional processing: historical roots and a future incorporating “dominance”. Behavioral and Cognitive Neuroscience Reviews, 4, 3–20. doi: 10.1177/1534582305276837 First citation in articleCrossref MedlineGoogle Scholar

  • Dolcos, F., LaBar, K. S. & Cabeza, R. (2004). Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. NeuroImage, 23, 64–74. doi: 10.1016/j.neuroimage.2004.05.015 First citation in articleCrossref MedlineGoogle Scholar

  • Duerden, E. G., Arsalidou, M., Lee, M. & Taylor, M. J. (2013). Lateralization of affective processing in the insula. NeuroImage, 78, 159–175. doi: 10.1016/j.neuroimage.2013.04.014 First citation in articleCrossref MedlineGoogle Scholar

  • Eimer, M. & Holmes, A. (2007). Event-related brain potential correlates of emotional face processing. Neuropsychologia, 45, 15–31. doi: 10.1016/j.neuropsychologia.2006.04.022 First citation in articleCrossref MedlineGoogle Scholar

  • Engels, A. S., Heller, W., Mohanty, A., Herrington, J. D., Banich, M. T., Webb, A. G. & Miller, G. A. (2007). Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology, 44, 352–363. doi: 10.1111/j.1469-8986.2007.00518.x First citation in articleCrossref MedlineGoogle Scholar

  • Erhan, H., Borod, J. C., Tenke, C. E. & Bruder, G. E. (1998). Identification of emotion in a dichotic listening task: Event-related brain potential and behavioral findings. Brain and Cognition, 37, 286–307. doi: 10.1006/brcg.1998.0984 First citation in articleCrossref MedlineGoogle Scholar

  • Fecteau, S., Pascual-Leone, A., Zald, D. H., Liguori, P., Théoret, H., Boggio, P. S. & Fregni, F. (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. The Journal of Neuroscience, 27, 6212–6218. doi: 10.1523/JNEUROSCI.0314-07.2007 First citation in articleCrossref MedlineGoogle Scholar

  • Ferrari, C., Lega, C., Vernice, M., Tamietto, M., Mende-Siedlecki, P., Vecchi, T., … Cattaneo, Z. (2016). The dorsomedial prefrontal cortex plays a causal role in integrating social impressions from faces and verbal descriptions. Cerebral Cortex, 26, 156–165. doi: 10.1093/cercor/bhu186 First citation in articleCrossref MedlineGoogle Scholar

  • Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., … Politi, P. (2009). Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry & Neuroscience, 34, 418–432. First citation in articleMedlineGoogle Scholar

  • Gorno-Tempini, M. L., Pradelli, S., Serafini, M., Pagnoni, G., Baraldi, P., Porro, C., … Nichelli, P. (2001). Explicit and incidental facial expression processing: An fMRI study. NeuroImage, 14, 465–473. doi: 10.1006/nimg.2001.0811 First citation in articleCrossref MedlineGoogle Scholar

  • Grimm, S., Schmidt, C. F., Bermpohl, F., Heinzel, A., Dahlem, Y., Wyss, M., … Northoff, G. (2006). Segregated neural representation of distinct emotion dimensions in the prefrontal cortex – An fMRI study. NeuroImage, 30, 325–340. doi: 10.1016/j.neuroimage.2005.09.006 First citation in articleCrossref MedlineGoogle Scholar

  • Grimm, S., Weigand, A., Kazzer, P., Jacobs, A. M. & Bajbouj, M. (2012). Neural mechanisms underlying the integration of emotion and working memory. NeuroImage, 61, 1188–1194. doi: 10.1016/j.neuroimage.2012.04.004 First citation in articleCrossref MedlineGoogle Scholar

  • Harmon-Jones, E., Gable, P. A. & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84, 451–462. doi: 10.1016/j.biopsycho.2009.08.010 First citation in articleCrossref MedlineGoogle Scholar

  • Harmer, C. J., Thilo, K. V., Rothwell, J. C. & Goodwin, G. M. (2001). Transcranial magnetic stimulation of medial-frontal cortex impairs the processing of angry facial expressions. Nature Neuroscience, 4, 17–18. doi: 10.1038/82854 First citation in articleCrossref MedlineGoogle Scholar

  • Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H.-P. & Villringer, A. (2003). An fMRI study of simple ethical decision-making. Neuroreport, 14, 1215–1219. First citation in articleCrossref MedlineGoogle Scholar

  • Herrington, J. D., Mohanty, A., Koven, N. S., Fisher, J. E., Stewart, J. L., Banich, M. T., … Heller, W. (2005). Emotion-modulated performance and activity in left dorsolateral prefrontal cortex. Emotion, 5, 200–207. doi: 10.1037/1528-3542.5.2.200 First citation in articleCrossref MedlineGoogle Scholar

  • Huettel, S. A., Song, A. W. & McCarthy, G. (2005). Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. The Journal of Neuroscience, 25, 3304–3311. doi: 10.1523/JNEUROSCI.5070-04.2005 First citation in articleCrossref MedlineGoogle Scholar

  • Jarosz, A. F. & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving, 7, 2. doi: 10.7771/1932-6246.1167 First citation in articleCrossrefGoogle Scholar

  • Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H., Hawk, S. T. & van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition and Emotion, 24, 1377–1388. doi: 10.1080/02699930903485076 First citation in articleCrossrefGoogle Scholar

  • Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J. & Barrett, L. F. (2015). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26, 1910–1922. doi: 10.1093/cercor/bhv001 First citation in articleCrossref MedlineGoogle Scholar

  • Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E. & Barrett, L. F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35, 121–143. doi: 10.1017/S0140525X11000446 First citation in articleCrossref MedlineGoogle Scholar

  • Macmillan, N. A. & Creelman, C. D. (2004). Detection theory: A user’s guide. New York, NY: Psychology press. First citation in articleCrossrefGoogle Scholar

  • Mak, A. K. Y., Hu, Z., Zhang, J. X., Xiao, Z. & Lee, T. M. C. (2009). Neural correlates of regulation of positive and negative emotions: An fMRI study. Neuroscience Letters, 457, 101–106. doi: 10.1016/j.neulet.2009.03.094 First citation in articleCrossref MedlineGoogle Scholar

  • Mattavelli, G., Cattaneo, Z. & Papagno, C. (2011). Transcranial magnetic stimulation of medial prefrontal cortex modulates face expressions processing in a priming task. Neuropsychologia, 49, 992–998. doi: 10.1016/j.neuropsychologia.2011.01.038 First citation in articleCrossref MedlineGoogle Scholar

  • Miller, G. A., Crocker, L. D., Spielberg, J. M., Infantolino, Z. P. & Heller, W. (2013). Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion and psychopathology. Frontiers in Integrative Neuroscience, 7, 2. doi: 10.3389/fnint.2013.00002 First citation in articleCrossref MedlineGoogle Scholar

  • Morey, R. D., Rouder, J. N. & Jamil, T. (2015). Package ‘BayesFactor’. Retrieved from https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf First citation in articleGoogle Scholar

  • Morris, P. L., Robinson, R. G., Raphael, B. & Hopwood, M. J. (1996). Lesion location and poststroke depression. The Journal of Neuropsychiatry and Clinical Neurosciences, 8, 399–403. doi: 10.1176/jnp.8.4.399 First citation in articleCrossref MedlineGoogle Scholar

  • Ocklenburg, S., Ness, V., Gunturkun, O., Suchan, B. & Beste, C. (2013). Response inhibition is modulated by functional cerebral asymmetries for facial expression perception. Frontiers in Psychology, 4, 879. doi: 10.3389/fpsyg.2013.00879 First citation in articleCrossref MedlineGoogle Scholar

  • Parkin, B. L., Ekhtiari, H. & Walsh, V. F. (2015). Non-invasive human brain stimulation in cognitive neuroscience: A primer. Neuron, 87, 932–945. doi: 10.1016/j.neuron.2015.07.032 First citation in articleCrossref MedlineGoogle Scholar

  • Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W. & Tancer, M. E. (2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57, 210–219. doi: 10.1016/j.biopsych.2004.10.030 First citation in articleCrossref MedlineGoogle Scholar

  • Pitcher, D. (2014). Facial expression recognition takes longer in the posterior superior temporal sulcus than in the occipital face area. The Journal of Neuroscience, 34, 9173–9177. doi: 10.1523/JNEUROSCI.5038-13.2014 First citation in articleCrossref MedlineGoogle Scholar

  • Pitcher, D., Duchaine, B. & Walsh, V. (2014). Combined TMS and fMRI reveal dissociable cortical pathways for dynamic and static face perception. Current Biology, 24, 2066–2070. doi: 10.1016/j.cub.2014.07.060 First citation in articleCrossref MedlineGoogle Scholar

  • Pitcher, D., Garrido, L., Walsh, V. & Duchaine, B. C. (2008). Transcranial magnetic stimulation disrupts the perception and embodiment of facial expressions. The Journal of Neuroscience, 28, 8929–8933. doi: 10.1523/JNEUROSCI.1450-08.2008 First citation in articleCrossref MedlineGoogle Scholar

  • Pitcher, D., Walsh, V., Yovel, G. & Duchaine, B. (2007). TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology, 17, 1568–1573. doi: 10.1016/j.cub.2007.07.063 First citation in articleCrossref MedlineGoogle Scholar

  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. doi: 10.2307/271063 First citation in articleCrossrefGoogle Scholar

  • Renzi, C., Schiavi, S., Carbon, C.-C., Vecchi, T., Silvanto, J. & Cattaneo, Z. (2013). Processing of featural and configural aspects of faces is lateralized in dorsolateral prefrontal cortex: A TMS study. NeuroImage, 74, 45–51. doi: 10.1016/j.neuroimage.2013.02.015 First citation in articleCrossref MedlineGoogle Scholar

  • Robertson, E. M., Theoret, H. & Pascual-Leone, A. (2003). Studies in cognition: The problems solved and created by transcranial magnetic stimulation. Journal of Cognitive Neuroscience, 15, 948–960. doi: 10.1162/089892903770007344 First citation in articleCrossref MedlineGoogle Scholar

  • Rossi, S., Hallett, M., Rossini, P. M. & Pascual-Leone, A. (2011). Screening questionnaire before TMS: An update. Clinical Neurophysiology, 122, 1686. doi: 10.1016/j.clinph.2010.12.037 First citation in articleCrossref MedlineGoogle Scholar

  • Rusjan, P. M., Barr, M. S., Farzan, F., Arenovich, T., Maller, J. J., Fitzgerald, P. B. & Daskalakis, Z. J. (2010). Optimal transcranial magnetic stimulation coil placement for targeting the dorsolateral prefrontal cortex using novel magnetic resonance image-guided neuronavigation. Human Brain Mapping, 31, 1643–1652. doi: 10.1002/hbm.20964 First citation in articleCrossref MedlineGoogle Scholar

  • Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T., ... Jeffries, J. (2011). Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage, 54, 2524–2533. doi: 10.1016/j.neuroimage.2010.10.011 First citation in articleCrossref MedlineGoogle Scholar

  • Sagliano, L., D’Olimpio, F., Panico, F., Gagliardi, S. & Trojano, L. (2016). The role of the dorsolateral prefrontal cortex in early threat processing: A TMS study. Social Cognitive and Affective Neuroscience, 11, 1992–1998. doi: 10.1093/scan/nsw105 First citation in articleCrossref MedlineGoogle Scholar

  • Schepman, A., Rodway, P. & Geddes, P. (2012). Valence-specific laterality effects in vocal emotion: Interactions with stimulus type, blocking and sex. Brain and Cognition, 79, 129–137. doi: 10.1016/j.bandc.2012.03.001 First citation in articleCrossref MedlineGoogle Scholar

  • Schutter, D. J., van Honk, J., d’Alfonso, A. A., Postma, A. & de Haan, E. H. (2001). Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport, 12, 445–447. First citation in articleCrossref MedlineGoogle Scholar

  • Starkstein, S. E., Robinson, R. G., Honig, M. A., Parikh, R. M., Joselyn, J. & Price, T. R. (1989). Mood changes after right-hemisphere lesions. The British Journal of Psychiatry, 155, 79–85. doi: 10.1192/bjp.155.1.79 First citation in articleCrossref MedlineGoogle Scholar

  • van Honk, J., Schutter, D. J., d’Alfonso, A. A., Kessels, R. P. & de Haan, E. H. (2002). 1 hz rTMS over the right prefrontal cortex reduces vigilant attention to unmasked but not to masked fearful faces. Biological Psychiatry, 52, 312–317. doi: 10.1016/S0006-3223(02)01346-X First citation in articleCrossref MedlineGoogle Scholar

  • Vanderhasselt, M. A., De Raedt, R., Baeken, C., Leyman, L. & D’haenen, H. (2006). The influence of rTMS over the left dorsolateral prefrontal cortex on Stroop task performance. Experimental Brain Research, 169, 279–282. doi: 10.1007/s00221-005-0344-z First citation in articleCrossref MedlineGoogle Scholar

  • Viinikainen, M., Jääskeläinen, I. P., Alexandrov, Y., Balk, M. H., Autti, T. & Sams, M. (2010). Nonlinear relationship between emotional valence and brain activity: Evidence of separate negative and positive valence dimensions. Human Brain Mapping, 31, 1030–1040. doi: 10.1002/hbm.20915 First citation in articleCrossref MedlineGoogle Scholar

  • Viinikainen, M., Jääskeläinen, I. P., Balk, M. H., Autti, T. & Sams, M. (2012). Neural processing of emotional valence of facial expressions. Open Journal of Neuroscience, 2, 3. First citation in articleGoogle Scholar

  • Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin and Review, 14, 779–804. doi: 10.3758/BF03194105 First citation in articleCrossref MedlineGoogle Scholar

  • Wager, T. D., Phan, K. L., Liberzon, I. & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: A meta-analysis of findings from neuroimaging. NeuroImage, 19, 513–531. doi: 10.1016/S1053-8119(03)00078-8 First citation in articleCrossref MedlineGoogle Scholar

  • Wilkowski, B. M. & Meier, B. P. (2010). Bring it on: Angry facial expressions potentiate approach-motivated motor behavior. Journal of Personality and Social Psychology, 98, 201. doi: 10.1037/a0017992 First citation in articleCrossref MedlineGoogle Scholar

  • Zwanzger, P., Steinberg, C., Rehbein, M. A., Bröckelmann, A. K., Dobel, C., Zavorotnyy, M., … Junghöfer, M. (2014). Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex modulates early affective processing. NeuroImage, 101, 193–203. doi: 10.1016/j.neuroimage.2014.07.003 First citation in articleCrossref MedlineGoogle Scholar

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.