Skip to main content
Original Communication

Zinc intake and status in Austria in the light of different reference values

Published Online:https://doi.org/10.1024/0300-9831/a000484

Abstract. Zinc has been identified as a critical micronutrient also in high-income countries. There is still some uncertainty about the evaluation of zinc sufficiency due to divergent daily intake reference values. We wanted to exemplify this issue using data from the Austrian Study on Nutritional Status 2012. Plasma zinc concentrations were measured in a nationally representative sample of 872 persons aged 6–80 years (55.5 % female). Dietary zinc intake was estimated from two 24h dietary recalls. Additionally, parameters of the antioxidative status (plasma malondialdehyde (MDA), total antioxidative capacity) and activities of alkaline phosphatase (AP), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px)) were determined. Zinc status was marginal in schoolchildren (40 % of boys and 22 % of girls) and in elderly (28 % of men and 33 % of women). Dietary zinc intake was also unsatisfactory in these groups with 38 % of boys and 32 % of girls and 64.5 % of older men below the nationally recommended intake levels. However, the adequacy of zinc intake varied with different reference values. Adults were more likely to meet the D-A-CH reference values and those from the European Food Safety Authority than the recommendations of the International Zinc Nutrition Consultative Group (IZiNCG) and the Institute of Medicine, whereas children met the IZiNCG values best. Zinc status correlated weakly with AP activity (r = –0.298, p < 0.001) and some antioxidant status markers (CAT, MDA, GSH-PX, SOD), especially in the elderly (MDA: r = –0.527, p < 0.001, and SOD: r = –0.466, p = 0.002). Our results suggest a suboptimal zinc supply in Austria particularly among schoolchildren and older adults.

Literature

  • Andreini, C., Banci, L., Bertini, I. & Rosato, A. (2006) Counting the zinc-proteins encoded in the human genome. J Proteom Res. 5, 196–201. First citation in articleCrossref MedlineGoogle Scholar

  • Maret, W. (2006) Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal. 8, 1419–1441. First citation in articleCrossref MedlineGoogle Scholar

  • Seve, M., Chimienti, F. & Favier, A. (2002) Rôle du zinc intracellulaire dans la mort cellulaire programmée [Role of intracellular zinc in programmed cell death. Article in French]. Pathol Biol. 50, 212–221. First citation in articleCrossref MedlineGoogle Scholar

  • Maret, W. (2000) The function of zinc metallothionein: A link between cellular zinc and redox state. J Nutr. 130, 1455S–1458S. First citation in articleCrossref MedlineGoogle Scholar

  • Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A. & Stefanidou, M. E. (2012) Zinc and human health: an update. Arch Toxicol. 86, 521–534. First citation in articleCrossref MedlineGoogle Scholar

  • Yang, H. K., Lee, S. H., Han, K., Kang, B., Lee, S. Y., Yoon, K. H., … Park, Y. M. (2015) Lower serum zinc levels are associated with unhealthy metabolic status in normal-weight adults: The 2010 Korea National Health and Nutrition Examination Survey. Diabetes MeTab. 41, 282–290. First citation in articleCrossref MedlineGoogle Scholar

  • World Health Organization (2009) Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization. First citation in articleGoogle Scholar

  • Black, R. E., Allen, L. H., Bhutta, Z. A., Caulfield, L. E., de Onis, M., & Ezzati, M., … the Maternal and Child Undernutrition Study Group (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 371, 243. First citation in articleCrossref MedlineGoogle Scholar

  • International Zinc Nutrition Consultative Group (IZiNCG) (Hotz, C. and Brown, K. H., eds.) (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin 25: S91-S204. First citation in articleGoogle Scholar

  • Marcellini, F., Giuli, C., Papa, R., Gagliardi, C., Dedoussis, G., Herbein, G., … Mocchegiani, E. (2006) Zinc status, psychological and nutritional assessment in old people recruited in five European countries: Zincage study. Biogerontology 7, 339–345. First citation in articleCrossref MedlineGoogle Scholar

  • Schneider, J. M., Fujii, M. L., Lamp, C. L., Lönnerdal, B. & Zidenberg-Cherr, S. (2007) The prevalence of low serum zinc and copper levels and dietary habits associated with serum zinc and copper in 12- to 36-month-old children from low-income families at risk for iron deficiency. J Am Diet Assoc. 107, 1924–1929. First citation in articleCrossref MedlineGoogle Scholar

  • Cole, C. R., Grant, F. K., Swaby-Ellis, E. D., Smith, J. L., Jacques, A., Northrop-Clewes, C. A., … Ziegler, T. R. (2010) Zinc and iron deficiency and their interrelations in low-income African American and Hispanic children in Atlanta. Am J Clin Nutr. 91, 1027–1034. First citation in articleCrossref MedlineGoogle Scholar

  • Gibson, R. S., Heath, A. L. & Szymlek-Gay, E. A. (2014) Is iron and zinc nutrition a concern for vegetarian infants and young children in industrialized countries? Am J Clin Nutr. 100, 459S–468S. First citation in articleCrossref MedlineGoogle Scholar

  • Elmadfa, I., Hasenegger, V., Wagner, K., Putz, P., Weidl, N. M. & Wottawa, D., et al. (2012) Österreichischer Ernährungsbericht 2012 [Austrian Nutrition Report 2012, in German]. 1st ed. Vienna. available at http://bmg.gv.at/home/Schwerpunkte/Ernaehrung/ Rezepte_Broschueren_Berichte/Der_Oesterreichische_Ernaehrungsbericht_2012 (accessed on July 21, 2015). First citation in articleGoogle Scholar

  • Moshfegh, A. J., Rhodes, D. G., Baer, D. J., Murayi, T., Clemens, J. C., Rumpl, W. V., … Cleveland, L. E. (2008) The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Amer J Clin Nutr. 88, 324–332. First citation in articleCrossref MedlineGoogle Scholar

  • Slimani, N., Deharveng, G., Charrondière, R. U., van Kappel, A. L., Ocké, M. C., Welch, A., … Riboli, E. (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Programs Biomed. 58, 251–266. First citation in articleCrossref MedlineGoogle Scholar

  • Himmerich, S., Gedrich, K. & Karg, G. (2003) Bayerische Verzehrsstudie (BVS) II. Abschlussbericht [Bavarian Food Consumption Study II. Final Report, in German.]. Munich: Bavarian State Ministry of the Environment and Consumer Protection. available at http://www.vis.bayern.de/ernaehrung/ernaehrung/ ernaehrungssituation/doc/abschlussbericht_bvs2.pdf (accessed on July 21, 2015). First citation in articleGoogle Scholar

  • Fuwa, K., Pulido, P., McKay, R. & Vallee, B. L. (1964) Determination of zinc in biological materials by atomic absorption spectrophotometry. Anal. Chem. 36, 2407–2411. First citation in articleCrossrefGoogle Scholar

  • Wong, S. H. Y., Knight, J. A., Hopfer, S. M., Zaharia, O., Leach, C. N. & Sunderman, F. W. (1987) Lipoperoxides in plasma as measured by liquid chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem. 33 (2 Pt 1), 214–220. First citation in articleCrossrefGoogle Scholar

  • Marklund, S & Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J. Biochem. 47, 469–474. First citation in articleCrossref MedlineGoogle Scholar

  • Beutler, E. (1984) Red cell metabolism: a manual of biochemical methods. New York, NY: Grune and Straton. First citation in articleGoogle Scholar

  • Aebi, H. (1974) Catalase. In: Methods of enzymatic analysis. (Bergmeyer, H. U., ed.) pp. 673–677, Academic Press, New York, NY. First citation in articleGoogle Scholar

  • Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V. & Milner, A. (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci. 84, 407–412. First citation in articleCrossref MedlineGoogle Scholar

  • Goldberg, G. R., Black, A. E., Jebb, S. A., Cole, T. J., Murgatroyd, P. R., Coward, W. A. & Prentice, A. M. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 45, 569–581. First citation in articleMedlineGoogle Scholar

  • Wessells, K. R., King, J. C. & Brown, K. H. (2014) Development of a plasma zinc concentration cutoff to identify individuals with severe zinc deficiency based on results from adults undergoing experimental severe dietary zinc restriction and individuals with acrodermatitis enteropathica. J Nutr. 144, 1204–1210. First citation in articleCrossref MedlineGoogle Scholar

  • German Nutrition Society, Austrian Nutrition Society, Swiss Society for Nutrition Research, Swiss Nutrition Association. (2015) Reference values for nutrient intake. 2nd ed., 1st issue. Frankfurt/Main: Umschau/Braus. First citation in articleGoogle Scholar

  • Lührmann, P. M., Bender, R., Edelmann-Schäfer, B. & Neuhäuser-Berthold, M. (2009) Longitudinal changes in energy expenditure in an elderly German population: a 12-year follow-up. Eur J Clin Nutr. 63, 986–992. First citation in articleCrossref MedlineGoogle Scholar

  • Ortlieb, S., Gorzelniak, L., Nowak, D., Strobl, R., Grill, E., Thorand, B., … Schulz, H. (2014) Associations between multiple accelerometry-assessed physical activity parameters and selected health outcomes in elderly people – Results from the KORA-Age Study. PLoS ONE 9, e111206. First citation in articleCrossref MedlineGoogle Scholar

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2014) Scientific opinion on dietary reference values for zinc. EFSA J. 12, 3844. First citation in articleCrossrefGoogle Scholar

  • Institute of Medicine, Food and Nutrition Board. (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 442–501. First citation in articleGoogle Scholar

  • Marshall, T. A., Stumbo, P. J., Warren, J. J. & Xie, X.-J. (2001) Inadequate nutrient intakes are common and are associated with low diet variety in rural, community-dwelling elderly. J Nutr. 131, 2192–2196. First citation in articleCrossref MedlineGoogle Scholar

  • Roberts, S. B., Hajduk, C. L., Howarth, N. C., Russell, R. & McCrory, M. A. (2005) Dietary variety predicts low body mass index and inadequate macronutrient and micronutrient intakes in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 60, 613–621. First citation in articleCrossref MedlineGoogle Scholar

  • Moran, V. H., Stammers, A.-L., Warthon Medina, M., Patel, S., Dykes, F., Souverein, O. W., … Lowe, N. M. (2012): The relationship between zinc intake and serum/plasma zinc concentration in children: A systematic review and dose-response meta-analysis. Nutrients. 4, 841–858. First citation in articleCrossref MedlineGoogle Scholar

  • King, J. C. (2011) Zinc: an essential but elusive nutrient. Am J Clin Nutr. 94 (suppl), 679S–684S. First citation in articleCrossref MedlineGoogle Scholar

  • Lowe, N. M., Fekete, K. & Decsi, T. (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr. 89, 2040S–2051S. First citation in articleCrossref MedlineGoogle Scholar

  • Hunt, J. R., Beiseigel, J. M. & Johnson, L. K. (2008) Adaptation in human zinc absorption as influenced by dietary zinc and bioavailability. Am J Clin Nutr. 87, 1336–1345. First citation in articleCrossref MedlineGoogle Scholar

  • Sandstead, H. H. & Freeland-Graves, J. H. (2014) Dietary phytate, zinc and hidden zinc deficiency. J. Trace Elem Med Biol. 28, 414–417. First citation in articleCrossref MedlineGoogle Scholar

  • Gibson, R. S. & Hotz, C. (2001) Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. Br J Nutr. 85 (suppl. 2), S159-S166. First citation in articleCrossref MedlineGoogle Scholar

  • Foster, M., Karra, M., Picone, T., Chu, A., Hancock, D. P., Petocz, P. & Samman, S. (2012) Dietary fiber intake increases the risk of zinc deficiency in healthy and diabetic women. Biol Trace Elem Res. 149, 135–142. First citation in articleCrossref MedlineGoogle Scholar

  • Wood, R. J. (2000) Assessment of marginal zinc status in humans. J Nutr. 130, 1350S–1354S. First citation in articleCrossref MedlineGoogle Scholar

  • Weismann, K & Høyer, H. (1985) Serum alkaline phosphatase and serum zinc levels in the diagnosis and exclusion of zinc deficiency in man. Am J Clin Nutr. 41, 1214–1219. First citation in articleCrossref MedlineGoogle Scholar

  • Bales, C. W., DiSilvestro, R. A., Currie, K. L., Plaisted, C. S., Joung, H., Galanos, A. N. & Lin, P. H. (1994) Marginal zinc deficiency in older adults: responsiveness of zinc status indicators. J Am Coll Nutr. 13, 455–462. First citation in articleCrossref MedlineGoogle Scholar

  • Rocha, E. D., de Brito, N. J., Dantas, M. M., Silva Ade, A., Almeida, Md. & Brandão-Neto, J. (2015) Effect of zinc supplementation on GH, IGF1, IGFBP3, OCN, and ALP in non-zinc-deficient children. J Am Coll Nutr. 34, 290–299. First citation in articleCrossref MedlineGoogle Scholar

  • Ryu, M.-S., Langkamp-Henken, B., Chang, S.-M., Shankar, M. N. & Cousins, R. J. (2011) Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis. Proc Natl Acad Sci USA. 106, 20970–20975. First citation in articleCrossrefGoogle Scholar

  • Kondoh, M., Inoue, Y., Atagi, S., Futakawa, N., Higashimoto, M. & Sato, M. (2001) Specific induction of metallothionein synthesis by mitochondrial oxidative stress. Life Sci. 69, 2137–2146. First citation in articleCrossref MedlineGoogle Scholar