Skip to main content
Original Communication

High coenzyme Q10 plasma levels improve stress and damage markers in professional soccer players during competition

Published Online:https://doi.org/10.1024/0300-9831/a000659

Abstract. Ubiquinol, the reduced form of Coenzyme Q10 (CoQ10), is a key factor in bioenergetics and antioxidant protection. During competition, professional soccer players suffer from considerable physical stress causing high risk of muscle damage. For athletes, supplementation with several antioxidants, including CoQ10, is widely recommended to avoid oxidative stress and muscle damage. We performed an observational study of plasma parameters associated with CoQ10 levels in professional soccer players of the Spanish First League team Athletic Club de Bilbao over two consecutive seasons (n = 24–25) in order determine their relationship with damage, stress and performance during competition. We analyzed three different moments of the competition: preterm, initial phase and mid phase. Metabolites and factors related with stress (testosterone/cortisol) and muscle damage (creatine kinase) were determined. Physical activity during matches was analyzed over the 2015/16 season in those players participating in complete matches. In the mid phase of competition, CoQ10 levels were higher in 2015/16 (906.8 ± 307.9 vs. 584.3 ± 196.3 pmol/mL, p = 0.0006) High levels of CoQ10 in the hardest phase of competition were associated with a reduction in the levels of the muscle-damage marker creatine kinase (Pearsons’ correlation coefficient (r) = − 0.460, p = 0.00168) and a trend for the stress marker cortisol (r = −0.252, p = 0.150). Plasma ubiquinol was also associated with better kidney function (r = −0.287, p = 0.0443 for uric acid). Furthermore, high CoQ10 levels were associated with higher muscle performance during matches. Our results suggest that high levels of plasma CoQ10 can prevent muscle damage, improve kidney function and are associated with higher performance in professional soccer players during competition.

References

  • 1 Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005;23(6):619–27. https://doi.org/10.1080/02640410400021302. First citation in articleCrossref MedlineGoogle Scholar

  • 2 Ispirlidis I, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Michailidis I, Douroudos I, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423–31. https://doi.org/10.1097/JSM.0b013e3181818e0b First citation in articleCrossref MedlineGoogle Scholar

  • 3 Ascensao A, Rebelo A, Oliveira E, Marques F, Pereira L, Magalhaes J. Biochemical impact of a soccer match - Analysis of oxidative stress and muscle damage markers throughout recovery. Clin Biochem. 2008;41(10–11):841–51. https://doi.org/10.1016/j.clinbiochem.2008.04.008 First citation in articleCrossref MedlineGoogle Scholar

  • 4 Magalhaes J, Rebelo A, Oliveira E, Silva JR, Marques F, Ascensao A. Impact of Loughborough Intermittent Shuttle Test versus soccer match on physiological, biochemical and neuromuscular parameters. Eur J Appl Physiol. 2010;108(1):39–48. https://doi.org/10.1007/s00421-009-1161-z First citation in articleCrossref MedlineGoogle Scholar

  • 5 Bok D, Jukic I. Muscle damage during a soccer world cup preparatory and competition period. Int J Sports Physiol Perform. 2019;15(4):496–502. https://doi.org/10.1123/ijspp.2019-0084 First citation in articleCrossrefGoogle Scholar

  • 6 Bentley DJ, Ackerman J, Clifford T, Slattery KS. Acute and chronic effects of antioxidant supplementation on exercise performance. In: M Lamprecht, editor. Antioxidants in Sport Nutrition. Boca Raton, FL: CRC Press/Taylor & Francis; 2015. p. 141–54. First citation in articleCrossrefGoogle Scholar

  • 7 Harty PS, Cottet ML, Malloy JK, Kerksick CM. Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: A brief review. Sports Med Open. 2019;5(1):1. https://doi.org/10.1186/s40798-018-0176-6 First citation in articleCrossref MedlineGoogle Scholar

  • 8 Braakhuis AJ, Hopkins WG. Impact of dietary antioxidants on sport performance: A review. Sports Med. 2015;45(7):939–55. https://doi.org/10.1007/s40279-015-0323-x First citation in articleCrossref MedlineGoogle Scholar

  • 9 Fedewa MV, Spencer SO, Williams TD, Becker ZE, Fuqua CA. Effect of branched-chain amino acid supplementation on muscle soreness following exercise: A meta-analysis. Int J Vitam Nutr Res. 2019;89(5–6):348–56. https://doi.org/10.1024/0300-9831/a000543 First citation in articleLinkGoogle Scholar

  • 10 Lopez-Lluch G, Rodriguez-Aguilera JC, Santos-Ocana C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev. 2010;131(4):225–35. https://doi.org/10.1016/j.mad.2010.02.003 First citation in articleCrossref MedlineGoogle Scholar

  • 11 Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT. Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res. 2002;36(4):389–97. First citation in articleCrossref MedlineGoogle Scholar

  • 12 Del Pozo-Cruz J, Rodriguez-Bies E, Ballesteros-Simarro M, Navas-Enamorado I, Tung BT, Navas P, et al. Physical activity affects plasma coenzyme Q10 levels differently in young and old humans. Biogerontology. 2014;15(2):199–211. https://doi.org/10.1007/s10522-013-9491-y First citation in articleCrossref MedlineGoogle Scholar

  • 13 Del Pozo-Cruz J, Rodriguez-Bies E, Navas-Enamorado I, Del Pozo-Cruz B, Navas P, Lopez-Lluch G. Relationship between functional capacity and body mass index with plasma coenzyme Q10 and oxidative damage in community-dwelling elderly-people. Exp Gerontol. 2014;52:46–54. https://doi.org/10.1016/j.exger.2014.01.026 First citation in articleCrossref MedlineGoogle Scholar

  • 14 Fernandez-Ayala DJ, Martin SF, Barroso MP, Gomez-Diaz C, Villalba JM, Rodriguez-Aguilera JC, et al. Coenzyme Q protects cells against serum withdrawal-induced apoptosis by inhibition of ceramide release and caspase-3 activation. Antioxid Redox Signal. 2000;2(2):263–75. https://doi.org/10.1089/ars.2000.2.2-263 First citation in articleCrossref MedlineGoogle Scholar

  • 15 Lopez-Lluch G, Barroso MP, Martin SF, Fernandez-Ayala DJ, Gomez-Diaz C, Villalba JM, et al. Role of plasma membrane coenzyme Q on the regulation of apoptosis. Biofactors. 1999;9(2–4):171–7. First citation in articleCrossref MedlineGoogle Scholar

  • 16 Alcazar-Fabra M, Navas P, Brea-Calvo G. Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochim Biophys Acta. 2016;1857(8):1073–8. https://doi.org/10.1016/j.bbabio.2016.03.010 First citation in articleCrossref MedlineGoogle Scholar

  • 17 Hernandez-Camacho JD, Bernier M, Lopez-Lluch G, Navas P. Coenzyme Q10 Supplementation in Aging and Disease. Front Physiol. 2018;9:44. https://doi.org/10.3389/fphys.2018.00044 First citation in articleCrossref MedlineGoogle Scholar

  • 18 Gokbel H, Gul I, Belviranl M, Okudan N. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. J Strength Cond Res. 2010;24(1):97–102. https://doi.org/10.1519/JSC.0b013e3181a61a50 First citation in articleCrossref MedlineGoogle Scholar

  • 19 Svensson M, Malm C, Tonkonogi M, Ekblom B, Sjodin B, Sahlin K. Effect of Q10 supplementation on tissue Q10 levels and adenine nucleotide catabolism during high-intensity exercise. Int J Sport Nutr. 1999;9(2):166–80. First citation in articleCrossref MedlineGoogle Scholar

  • 20 Gul I, Gokbel H, Belviranli M, Okudan N, Buyukbas S, Basarali K. Oxidative stress and antioxidant defense in plasma after repeated bouts of supramaximal exercise: The effect of coenzyme Q10. J Sports Med Phys Fitness. 2011;51(2):305–12. First citation in articleMedlineGoogle Scholar

  • 21 Orlando P, Silvestri S, Galeazzi R, Antonicelli R, Marcheggiani F, Cirilli I, et al. Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes. Redox Rep. 2018;23(1):136–45. https://doi.org/10.1080/13510002.2018.1472924 First citation in articleCrossref MedlineGoogle Scholar

  • 22 Suzuki Y, Nagato S, Sakuraba K, Morio K, Sawaki K. Short-term Ubiquinol-10 supplementation alleviates tissue damage in muscle and fatigue caused by strenuous exercise in male distance runners. Int J Vitam Nutr Res. 2020;1–10. https://doi.org/10.1024/0300-9831/a000627 First citation in articleLinkGoogle Scholar

  • 23 Malm C, Svensson M, Ekblom B, Sjodin B. Effects of ubiquinone-10 supplementation and high intensity training on physical performance in humans. Acta Physiol Scand. 1997;161(3):379–84. https://doi.org/10.1046/j.1365-201X.1997.00198.x First citation in articleCrossref MedlineGoogle Scholar

  • 24 Malm C, Svensson M, Sjoberg B, Ekblom B, Sjodin B. Supplementation with ubiquinone-10 causes cellular damage during intense exercise. Acta Physiol Scand. 1996;157(4):511–2. https://doi.org/10.1046/j.1365-201X.1996.534286000.x First citation in articleCrossref MedlineGoogle Scholar

  • 25 Ostman B, Sjodin A, Michaelsson K, Byberg L. Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans. Nutrition. 2012;28(4):403–17. https://doi.org/10.1016/j.nut.2011.07.010 First citation in articleCrossref MedlineGoogle Scholar

  • 26 Lopez-Lluch G, Del Pozo-Cruz J, Sanchez-Cuesta A, Cortes-Rodriguez AB, Navas P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition. 2019;57:133–40. https://doi.org/10.1016/j.nut.2018.05.020 First citation in articleCrossref MedlineGoogle Scholar

  • 27 Rodriguez-Aguilera JC, Cortes AB, Fernandez-Ayala DJ, Navas P. Biochemical assessment of coenzyme Q10 deficiency. J Clin Med. 2017;6(3):27. https://doi.org/10.3390/jcm6030027 First citation in articleCrossrefGoogle Scholar

  • 28 Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502. First citation in articleCrossref MedlineGoogle Scholar

  • 29 Weber C, Bysted A, Holmer G. Coenzyme Q10 in the diet – Daily intake and relative bioavailability. Mol Aspects Med. 1997;18(Suppl):S251–4. First citation in articleCrossref MedlineGoogle Scholar

  • 30 Gonzalez-Mariscal I, Martin-Montalvo A, Vazquez-Fonseca L, Pomares-Viciana T, Sanchez-Cuesta A, Fernandez-Ayala DJ, et al. The mitochondrial phosphatase PPTC7 orchestrates mitochondrial metabolism regulating coenzyme Q10 biosynthesis. Biochim Biophys Acta Bioenerg. 2018;1859(11):1235–48. https://doi.org/10.1016/j.bbabio.2018.09.369 First citation in articleCrossref MedlineGoogle Scholar

  • 31 Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42(10):824–43. https://doi.org/10.1016/j.tibs.2017.06.008 First citation in articleCrossref MedlineGoogle Scholar

  • 32 Yubero D, Montero R, Santos-Ocana C, Salviati L, Navas P, Artuch R. Molecular diagnosis of coenzyme Q10 deficiency: An update. Expert Rev Mol Diagn. 2018;18(6):491–8. https://doi.org/10.1080/14737159.2018.1478290 First citation in articleCrossref MedlineGoogle Scholar

  • 33 Miles MV. The uptake and distribution of coenzyme Q10. Mitochondrion. 2007;7(Suppl):S72–7. https://doi.org/10.1016/j.mito.2007.02.012 First citation in articleCrossref MedlineGoogle Scholar

  • 34 Battino M, Amadio E, Oradei A, Littarru GP. Metabolic and antioxidant markers in the plasma of sportsmen from a Mediterranean town performing non-agonistic activity. Mol Aspects Med. 1997;18(Suppl):S241–5. First citation in articleCrossref MedlineGoogle Scholar

  • 35 Okamoto T, Mizuta K, Mizobuchi S, Usui A, Takahashi T, Fujimoto S, et al. Decreased serum ubiquinol-10 levels in healthy subjects during exercise at maximal oxygen uptake. Biofactors. 2000;11(1–2):31–3. First citation in articleCrossref MedlineGoogle Scholar

  • 36 Armstrong RB. Mechanisms of exercise-induced delayed onset muscular soreness: A brief review. Med Sci Sports Exerc. 1984;16(6):529–38. First citation in articleCrossref MedlineGoogle Scholar

  • 37 Shimomura Y, Suzuki M, Sugiyama S, Hanaki Y, Ozawa T. Protective effect of coenzyme Q10 on exercise-induced muscular injury. Biochem Biophys Res Commun. 1991;176(1):349–55. First citation in articleCrossref MedlineGoogle Scholar

  • 38 Kon M, Kimura F, Akimoto T, Tanabe K, Murase Y, Ikemune S, et al. Effect of Coenzyme Q10 supplementation on exercise-induced muscular injury of rats. Exerc Immunol Rev. 2007;13:76–88. First citation in articleMedlineGoogle Scholar

  • 39 Belviranli M, Okudan N. Effect of coenzyme Q10 alone and in combination with exercise training on oxidative stress biomarkers in rats. Int J Vitam Nutr Res. 2018;88(3–4):126–36. https://doi.org/10.1024/0300-9831/a000261 First citation in articleLinkGoogle Scholar

  • 40 Chis BA, Chis AF, Muresan A, Fodor D. Q10 coenzyme supplementation can improve oxidative stress response to exercise in metabolic syndrome in rats. Int J Vitam Nutr Res. 2020;90(1–2):33–41. https://doi.org/10.1024/0300-9831/a000301 First citation in articleLinkGoogle Scholar

  • 41 Trevisson E, DiMauro S, Navas P, Salviati L. Coenzyme Q deficiency in muscle. Curr Opin Neurol. 2011;24(5):449–56. https://doi.org/10.1097/WCO.0b013e32834ab528 First citation in articleCrossref MedlineGoogle Scholar

  • 42 Okudan N, Belviranli M, Torlak S. Coenzyme Q10 does not prevent exercise-induced muscle damage and oxidative stress in sedentary men. J Sports Med Phys Fitness. 2018;58(6):889–94. https://doi.org/10.23736/S0022-4707.17.07146-8 First citation in articleCrossref MedlineGoogle Scholar

  • 43 Tauler P, Ferrer MD, Sureda A, Pujol P, Drobnic F, Tur JA, et al. Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer. Eur J Appl Physiol. 2008;104(5):777–85. https://doi.org/10.1007/s00421-008-0831-6 First citation in articleCrossref MedlineGoogle Scholar

  • 44 Bloomer RJ, Canale RE, McCarthy CG, Farney TM, Impact of oral ubiquinol on blood oxidative stress and exercise performance. Oxid Med Cell Longev. 2012;2012:465020. https://doi.org/10.1155/2012/465020 First citation in articleCrossref MedlineGoogle Scholar

  • 45 Langsjoen PH, Langsjoen AM. Comparison study of plasma coenzyme Q10 levels in healthy subjects supplemented with ubiquinol versus ubiquinone. Clin Pharmacol Drug Dev. 2014;3(1):13–7. https://doi.org/10.1002/cpdd.73 First citation in articleCrossref MedlineGoogle Scholar

  • 46 Laaksonen R, Fogelholm M, Himberg JJ, Laakso J, Salorinne Y. Ubiquinone supplementation and exercise capacity in trained young and older men. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):95–100. First citation in articleCrossref MedlineGoogle Scholar

  • 47 Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition. 2008;24(4):293–9. https://doi.org/10.1016/j.nut.2007.12.007 First citation in articleCrossref MedlineGoogle Scholar

  • 48 Ylikoski T, Piirainen J, Hanninen O, Penttinen J. The effect of coenzyme Q10 on the exercise performance of cross-country skiers. Mol Aspects Med. 1997;18(Suppl):S283–90. First citation in articleCrossref MedlineGoogle Scholar

  • 49 Bonetti A, Solito F, Carmosino G, Bargossi AM, Fiorella PL. Effect of ubidecarenone oral treatment on aerobic power in middle-aged trained subjects. J Sports Med Phys Fitness. 2000;40(1):51–7. First citation in articleMedlineGoogle Scholar

  • 50 Alf D, Schmidt ME, Siebrecht SC. Ubiquinol supplementation enhances peak power production in trained athletes: A double-blind, placebo controlled study. J Int Soc Sports Nutr. 2013;10:24. https://doi.org/10.1186/1550-2783-10-24 First citation in articleCrossref MedlineGoogle Scholar

  • 51 Emami A, Bazargani-Gilani B. Effect of oral CoQ10 supplementation along with precooling strategy on cellular response to oxidative stress in elite swimmers. Food Funct. 2018;9(8):4384–93. https://doi.org/10.1039/c8fo00960k First citation in articleCrossref MedlineGoogle Scholar

  • 52 Emami A, Tofighi A, Asri-Rezaei S, Bazargani-Gilani B. The effect of short-term coenzyme Q10 supplementation and pre-cooling strategy on cardiac damage markers in elite swimmers. Br J Nutr. 2018;119(4):381–90. https://doi.org/10.1017/S0007114517003774 First citation in articleCrossref MedlineGoogle Scholar

  • 53 Karlsson J, Lin L, Sylven C, Jansson E. Muscle ubiquinone in healthy physically active males. Mol Cell Biochem. 1996;156(2):169–72. https://doi.org/10.1007/bf00426340 First citation in articleCrossref MedlineGoogle Scholar

  • 54 Linnane AW, Kopsidas G, Zhang C, Yarovaya N, Kovalenko S, Papakostopoulos P, et al. Cellular redox activity of coenzyme Q10: Effect of CoQ10 supplementation on human skeletal muscle. Free Radic Res. 2002;36(4):445–53. https://doi.org/10.1080/10715760290021306 First citation in articleCrossref MedlineGoogle Scholar

  • 55 Sugama K, Suzuki K, Yoshitani K, Shiraishi K, Miura S, Yoshioka H, et al. Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise. Exerc Immunol Rev. 2015;21:130–42. First citation in articleMedlineGoogle Scholar

  • 56 Bongers C, Alsady M, Nijenhuis T, Tulp ADM, Eijsvogels TMH, Deen PMT, et al. Impact of acute versus prolonged exercise and dehydration on kidney function and injury. Physiol Rep. 2018;6(11):e13734. https://doi.org/10.14814/phy2.13734 First citation in articleCrossref MedlineGoogle Scholar

  • 57 Spada TC, Silva J, Francisco LS, Marcal LJ, Antonangelo L, Zanetta DMT, et al. High intensity resistance training causes muscle damage and increases biomarkers of acute kidney injury in healthy individuals. PLoS One. 2018;13(11):e0205791. https://doi.org/10.1371/journal.pone.0205791 First citation in articleCrossref MedlineGoogle Scholar