Skip to main content

Microarray analysis for delineating the gene expression in biopsies of gastrocnemius muscle of patients with chronic critical limb ischaemia compared with non-ischaemic controls

Published Online:https://doi.org/10.1024/0301-1526/a000700

Abstract.Background: Microarray analysis has been carried out in this pilot study to compare delineated gene expression profiles in the biopsies of skeletal muscle taken from patients with chronic critical limb ischaemia (CLI) and non-ischaemic control subjects. Patients and methods: Biopsy of gastrocnemius muscle was obtained from six patients with unreconstructed CLI referred for surgical major amputation. As control, biopsies of six patients undergoing elective knee arthroplasty without evidence of peripheral arterial occlusive disease were taken. The differences in gene expression associated with angiogenic processes in specimens obtained from ischaemic and non-ischaemic skeletal muscle were confirmed by quantitative real-time polymerase chain reaction (PCR) analysis. Results: Compared with non-ischaemic skeletal muscle biopsy of chronic-ischaemic skeletal muscle contained 55 significantly up-regulated and 45 down-regulated genes, out of which 64 genes had a known genetic product. Tissue samples of ischaemic muscle were characterized by increased expression of cell survival factors (e. g. tissue factor pathway inhibitor 2) in combination with reduced expression of cell proliferation effectors (e. g. microfibrillar-associated protein 5 and transferrin receptor). The expression of growth factors (e. g. early growth response 3 and chemokine receptor chemokine C-X-C motif ligand 4) which play a central role in arterial and angiogenic processes and anti-angiogenetic factors (e. g. pentraxin 3) were increased in chronic ischaemic skeletal muscle. An increased expression of extracellular matrix proteins (e. g. cysteine-rich angiogenic inducer 61) was also observed. Conclusions: Gene expression profiles in biopsies of gastrocnemius muscle in patients with chronic critical limb ischaemia showed an increase in pro-survival factors, extracellular matrix protein deposition, and impaired proliferation, compared with non-ischaemic controls. Further studies are required to analyse the endogenous repair mechanism.

Literature

  • Diehm C, Schuster A, Allenberg JR, Darius H, Haberl R & Lange S, et al. High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis. 2004;172:95–105. First citation in articleCrossref MedlineGoogle Scholar

  • Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA & Fowkes FGR. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007;45 Suppl S:S5–67. First citation in articleCrossref MedlineGoogle Scholar

  • Lawall H, Bramlage P & Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal. Thromb Haemost. 2010;103:696–709. First citation in articleCrossref MedlineGoogle Scholar

  • Fadini GP, Agostini C & Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2010;209:10–7. First citation in articleCrossref MedlineGoogle Scholar

  • Burt RK, Testori A, Oyama Y, Rodriguez HE, Yaung K & Villa M, et al. Autologous peripheral blood CD133+ cell implantation for limb salvage in patients with critical limb ischemia. Bone Marrow Transplant. 2009;18:1–6. First citation in articleGoogle Scholar

  • Amann B, Lüdemann C, Rückert R, Lawall H, Liesenfeld B & Schneider M, et al. Design and rationale of a randomized, double-blind, placebo-controlled phase III study for autologous bone marrow cell transplantation in critical limb ischemia: the BONe Marrow Outcomes Trial in Critical Limb Ischemia (BONMOT-CLI). VASA. 2008;37:319–25. First citation in articleLinkGoogle Scholar

  • Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S & Norgren L, et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 2011;377:1929–37. First citation in articleCrossref MedlineGoogle Scholar

  • Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21:1104–17. First citation in articleCrossref MedlineGoogle Scholar

  • van Hinsbergh VWM, Engelse MA & Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol. 2006;26:716–28. First citation in articleCrossref MedlineGoogle Scholar

  • Parfenova EV, Piekhanova OS, Men’shikov M, Stepanova VV & Tkachuk VA, et al. Regulation of growth and remodeling of blood vessels: the unique role of urokinase. Ross Fiziol Zh Im I M Sechenova. 2009;95:442–64. First citation in articleMedlineGoogle Scholar

  • Tkachuk VA, Plekhanova OS & Parfyonova YV. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can J Physiol Pharmacol. 2009;87:231–51. First citation in articleCrossref MedlineGoogle Scholar

  • Traktuev DO, Tsokolaeva ZI, Shevelev A, Talitskiy KA, Stepanova VV & Johnstone BH, et al. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle. Mol Ther. 2007;15:1939–46. First citation in articleCrossref MedlineGoogle Scholar

  • Grote K, Salguero G, Ballmaier M, Dangers M, Drexler H & Schieffer B, et al. The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood. 2007;110:877–85. First citation in articleCrossref MedlineGoogle Scholar

  • Yu Y, Gao Y, Wang H, Huang L, Qin J & Guo R, et al. The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells. Exp Cell Res. 2008;314:3198–208. First citation in articleCrossref MedlineGoogle Scholar

  • Rayssac A, Neveu C, Pucelle M, Van den Berghe L, Prado-Lourenco L & Arnal JF, et al. IRES-based vector coexpressing FGF2 and Cyr61 provides synergistic and safe therapeutics of lower limb ischemia. Mol Ther. 2009;17:2010–9. First citation in articleCrossref MedlineGoogle Scholar

  • Suehiro J, Hamakubo T, Kodama T, Aird WC & Minami T. Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood. 2010;115:2520–32. First citation in articleCrossref MedlineGoogle Scholar

  • Ma J, Wang Q, Fei T, Han JD & Chen YG. MCP-1 mediates TGF-beta-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood. 2007;109:987–94. First citation in articleCrossref MedlineGoogle Scholar

  • Schierling W, Troidl K, Troidl C, Schmitz-Rixen T, Schaper W & Eitenmüller IK. The role of angiogenic growth factors in arteriogenesis. J Vasc Res. 2009;46:365–74. First citation in articleCrossref MedlineGoogle Scholar

  • Ho TK, Tsui J, Xu S, Leoni P, Abraham DJ & Baker DM. Angiogenic effects of stromal cell-derived factor-1 (SDF-1/CXCL12) variants in vitro and the in vivo expressions of CXCL12 variants and CXCR4 in human critical leg ischemia. J Vasc Surg. 2010;51:689–99. First citation in articleCrossref MedlineGoogle Scholar

  • Albig AR, Becenti J, Roy TG & Schiemann WP. Microfibril-associate glycoprotein-2 (MAGP-2) promotes angiogenic cell sprouting by blocking notch signaling in endothelial cells. Microvascular Res. 2008;76:7–14. First citation in articleCrossref MedlineGoogle Scholar

  • Alessi P, Leali DS, Camozzi D, Cantelmo A, Albini A & Presta M. Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Eur Cytokine Netw. 2009;20:225–34. First citation in articleMedlineGoogle Scholar

  • van Weel V, Seghers L, deVries MR, Kuiper EJ, Schlingemann RO & Bajema IM, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol. 2007;27:1426–32. First citation in articleCrossref MedlineGoogle Scholar

  • Tuomisto TT, Trissanen T, Vajento I, Kuiper EJ, Schlingemann RO & Bajema IM, et al. HIF-VEGF-VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis. 2004;174:111–20. First citation in articleCrossref MedlineGoogle Scholar